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Abstract. Recently, great efforts have been dedicated to researches on
the management of large-scale graph-based data, where node disjoint
subgraph homeomorphism relation between graphs has been shown to be
more suitable than (sub)graph isomorphism in many cases, especially in
those cases where node skipping and node mismatching are desired. How-
ever, no efficient algorithm for node disjoint subgraph homeomorphism
determination (ndSHD) has been available. In this paper, we propose
two computationally efficient ndSHD algorithms based on state spaces
searching with backtracking, which employ many heuristics to prune the
search spaces. Experimental results on synthetic data sets show that the
proposed algorithms are efficient, require relatively little time in most of
cases, can scale to large or dense graphs, and can accommodate to more
complex fuzzy matching cases.

1 Introduction

Graph-based pattern matching is one of the key issues underlying large-scale
graph-based data management, which recently has attracted more and more
research interests, due to the broad applications of graph-based data. Existing
graph pattern matchings based upon subgraph isomorphism cannot represent
the fuzzy matching in some cases where node skipping or node mismatching is
allowed. For example, as shown in Figure 1, although G2 is not a subgraph of G1,
G2 still can be regarded as matched to G1 if node skipping or node mismatching
is allowed.

Such kind of fuzzy matching is desired in various real applications. For ex-
ample, the discovery of frequent conserved subgraph patterns from protein in-
teraction networks [1,2] is an important and challenging work in evolutionary
and comparative biology, where ’conserved’ just means the inexact graph pat-
tern matching allowing node mismatch and node skipping. Similarly, in social
network analysis, the direct connection between nodes usually is not the focus;
instead, the high-level topological structure with independent paths contracted
is of great interest.
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Using Graph Minor theory [4], the abstract topological structure in many
real applications can be described as topological minor, and the relation between
abstract topological structure and its detailed original graph can be described as
node/vertex disjoint subgraph homeomorphism. However, to determine whether
a pattern graph P is a topological minor of data graph G is non-trivial, and
has been proved to be NP-complete when P and G are not fixed [3]. Although
Robertson and Seymour [4] have proposed a framework to solve minor contain-
ment problem that is a generalization of topology containment problem and
[5] has implemented the framework, no practically efficient algorithm has been
available to solve ndSHD, to the best of our knowledge. Here, we propose two
algorithms that are based upon state space searching with backtracking. To im-
prove the efficiency, many heuristics have been integrated into the searching
procedures to prune the search spaces.

2 Preliminaries

We begin this section with some basic notations. Let G = (V, E, l) be a vertex
labeled graph, where V is the set of vertices, E is the set of edges and E ⊆ V ×V ,
and l is a label function l : V → L , giving every vertex a label. The vertex set
of G is referred to as V (G), and the edge set is referred to as E(G). A path P
in a graph is a sequence of vertices v1,v2,...,vk, where vi ∈ V and vivi+1 ∈ E
for each i. The vertices v1 and vk are linked by P and are called its ends. The
number of edges of a path is its length, and the path of length k is denoted as
P k. A path is simple if its vertices are all distinct. Particularly, a group of paths
are independent if none of the paths has an inner vertex on another path.

As described in [7], a topological minor of a graph is obtained by contract-
ing the independent paths of one of its subgraphs into edges. For example, in
Figure 2, X is a topological minor of Y , since X can be obtained by contracting
the independent paths of G that is a subgraph of Y .

Formally, as shown in Figure 2, if we replace all the edges of X with indepen-
dent paths between their ends, so that these paths are pairwise node independent,
i.e. none of these paths has an inner vertex on another path, then G is a subdi-
vision of X . Furthermore, if G is a subgraph of Y , then X is a topological minor
of Y . As a subdivision of X and a subgraph of Y , if G is obtained by replacing
all the edges of X with independent paths with length from l to h, then G is an
(l, h)-subdivision of X and X is an (l, h)-topological minor of Y .
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Given two graphs X and Y , if X is a topological minor of Y , then there exists
a corresponding node disjoint subgraph homeomorphism from X into Y , which is
a pair of injective mappings (f, g) from X into Y . Here, f is an injective mapping
from vertex set of X into that of Y (all the mapped nodes under mapping f are
called branch nodes of Y ). And g is an injective mapping from edges of X into
simple paths of Y such that (1) for each e(v1, v2) ∈ E(X), g(e) is a simple path
in Y with f(v1) and f(v2) as two ends; and (2) all mapped paths are pairwise
independent.

3 Algorithm Framework

3.1 A Rudimentary Algorithm

To determine whether G1 is an (l, h)-topological minor of G2 is equivalent to
find a pair of mappings (f, g) between these two graphs. The final solution of
the determination can be described as M = (NM, EPM), where NM ⊆ V1 ×V2
is the node match set and EPM ⊆ E1 × (P l ∪ ... ∪ P h) is the edge-path match
set. All the mapped nodes of G2 can be denoted by NM (2), and all the mapped
paths of G2 can be denoted by EPM (2).

The process of finding the homeomorphism mapping can be suitably described
by means of State Space Representation [9]. Each state s of the matching process
can be associated with a partial mapping solution Ms = (NMs, EPMs), where
NMs and EPMs are the node match set and edge-path match set at state s,
respectively. Obviously, Ms contains all the matches we have found so far and
will probably be a subset of some final match set M. The algorithm framework
based on state space searching is shown as follows.

Algorithm ndSHD1(G1, G2, l, h)
Input: G1,G2:vertex labeled graphs; l:minimal path length; h:maximal path length.
Output: If G1 is an (l, h)-topological minor of G2 return true and return the first
found node disjoint subgraph homeomorphism (f, g), otherwise return false.

1. Initial(M , R);/*Initialize SHD, generate necessary path information, initialize the
basic data structures M and R, which will be described in the following section.*/

2. s ← ∅; /*Initialize state as empty state.*/
3. while NodeMappingSearch(s,M ,R) /*Search in node mapping space. */
4. if EdgePathMappingSearch(s,M ,R) /*Search in edge-path mapping space.*/
5. return true;
6. return false;

For example, given two graphs shown in Figure 3, let (l, h) be (2, 2), which
means the edges in G1 can only be mapped to the paths in G2 with length 2. The
running procedure under above parameters is shown in Figure 4. The result of the
determination is true, and the node mappings are NM = {1−2, 2−8, 3−6, 4−4}
and the five edge-path mappings are EPM = {12 − 218, 13 − 296, 14 − 234, 23−
876, 34 − 654}.

Please note that the answer to the problem is sensitive to the given parameter
(l, h). If (l, h) is (3, 3), G1 is not a topological minor of G2. The influence of
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Fig. 4. Two-Level State Space Searching

parameter (l, h) on topology containment determination has been discussed in
[8] in detail.

3.2 Basic Data Structures

As described above, we need two basic data structures, one is used to represent
the node mapping information; the other is used to represent (l, h) independent
path information of G2. For the former, we use node compatible matrix; the
latter, we use independent path matrix as well as a path index structure. Both
of them are changing with the transition of the matching state.
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Fig. 6. R and its associated path index structure

We define node compatible matrix M = [mij ] to be an n1 (rows)×n2 (columns)
matrix whose elements are 1’s or 0’s, where n1 and n2 are the number of nodes in
G1 and G2, respectively. At the final success state, we can get a final mapping ma-
trix M ′ = [m′

ij ] whose elements are 1’s or 0’s, such that each row contains exactly
one 1 and each column contains no more than one 1. The final mapping matrix
represents a valid one-to-one mapping between nodes of G1 and G2, while the
initial compatible matrix M0 represents the probable mappings between nodes
of G1 and G2. Obviously, for each element m′

ij of M ′, (m′
ij = 1) → (m0

ij = 1).
Clearly, reducing the number of 1’s in M is the key to reduce the node mapping

space, which is the basic idea of Lemma 1. When constructing independent path
matrix and its associated path index structure, we only need to enumerate all the
(l, h)-paths between all candidate branch node pairs, which is based on Lemma 2.
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Lemma 1. The number of elements of the independent path set starting from a
vertex v is no more than d(v), where d(v) denotes the degree of v.

Lemma 2. If G1 is an (l, h)-topological minor of G2 under subgraph homeo-
morphism (f, g), then g(E1) only contains paths ending with those branch nodes
in G2.

Then, we can define the independent path matrix R = [rij ] to be an n′
2 × n′

2
matrix (n′

2 is the number of candidate branch nodes in G2) with rij representing
the number of (l, h) paths between the node pair (vi, vj) in G2. The detailed
path information is stored in an array of lists RLists, where each list contains
path addresses that point to the physical storage of the paths for some rij .

Figure 5 and Figure 6 show these two basic data structures used in the running
case shown in Figure 3.

3.3 State Space Searching

The procedure of node mapping space searching and edge-path mapping space
searching are similar to each other. These two procedures are shown as follows.

Algorithm Node/EdgePathMappingSearch1 (s,M ,R)
Input: s:the current matching state; M :the current node compatible matrix; R: the
current independent path matrix.
Output: found : a boolean variable indicating whether a complete node/edge-path
mapping has been found.

1. if(s is dead state) return false;
2. if(s is complete mapping state) return true;
3. let found←false
4. while(not found && Exists Valid node/edge-path Mapping Pair)
5. m ←GetNextNodePair(); /*m ←GetNextEdgePathPair();*/
6. s′ ←BackupState(s);
7. NMs ← NMs ∪ {m}; /*EPMs ← EPMs ∪ {m}*/
8. Refine(M ,R);
9. found←Node/EdgePathMappingSearch(s, M , R);

10. if(found) return true;
11. s ←RecoverState(s′);
12. return false;

From lines 1-2, we can see that when a new state s arrives, s can be a dead
state or success state(complete mapping state). The state space search arrives at
a success state if all the node mappings or edge-path mappings have been found,
which means |NMs| = |V1| or |EPMs| = |E1|. The node mapping state space
search arrives at a dead state if there is a row with all 0’s in node compatible
matrix M of the current state, i.e. ∃i, |NMs| ≤ i ≤ n1,s.t.

∑
1≤j≤n2

mij = 0.
And the edge-path mapping state space search arrives at a dead state if there
is no path between some pair of branch nodes, i.e., ∃i, |EPMs| ≤ i ≤ n′

2,s.t.∏
(f−1(node(i)),f−1(node(j)))∈E1

rij = 0, where node(i) gets the vertex correspond-
ing to the i-th column in matrix R.
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3.4 Refinement Procedure

To traverse all possible mapping branches is time-consuming, so space pruning
is essential for ndSHD. For this purpose, we devise two refinement procedures
on R and M , respectively. Lemma 3 and 4 show the correctness of refinement
on R, and Lemma 5 shows the correctness of refinement on M .

Lemma 3. In the matching process, let s be the current state, if v ∈ NM
(2)
s

and Ms will be a partial solution of some final solution M, then any path with
v as inner vertex will not ∈ EPM (2).

Lemma 4. In the matching process, let s be the current state, if p ∈ EPM
(2)
s

and Ms will be a partial solution of some final solution M, then any path passing
trough the inner vertex of p will not ∈ EPM (2).

Lemma 5. In the matching process, let s be the current state, if (vi, vj) ∈
NM(vi ∈ V1, vj ∈ V2) and Ms will be a partial solution of some final solu-
tion M, then the following statements hold true:

1.
∏

rj′k > 0,where j′ = Index(vj), k ∈ Index(V ) and V = {v2|v1 ∈ Adjacent
(vi) ∧ (v1, v2) ∈ NMs}.

2. ∀v′ ∈ V ′, ∃v ∈ V2 such that l2(v) = l1(v′) and rj′k > 0,where j′ = Index(vj),
k = Index(v) and V ′ = {v′|v′ ∈ Adjacent(vi) ∩ (V1 − NM

(1)
s )}.

3. The path set consisting of the paths to which all mentioned rj′k’s in (1) and
(2) indicate is independent.

In the above statements, the function Index(v) gets an index in R for a node v
in G2; and Adjacent(v) obtains the adjacent vertex set of v.

3.5 More Efficient Searching Strategy

A basic observation of the above refinement procedures is that the constraint
resulting from an edge-path match will be more restrictive than that resulting
from a node match. Hence, a better strategy is to try edge-path match as early
as possible, rather than performing edge-path match until complete node match
has been found. We denote these two strategy as s1 (old strategy) and s2(new
strategy), respectively; and algorithms employing two strategies are denoted
as ndSHD1 and ndSHD2, respectively. Intuitively, in ndSHD2 the searching
procedure will meet with the dead state very early if the current searching path
will not lead to a successful mapping solution, thus the searching procedure will
fast backtrack to try another mapping solution.

The framework of algorithms ndSHD2 and Node/EdgePathMappingSearch2
are similar to that of ndSHD1 and Node/EdgePathMappingSearch1, and thus
the details are omitted here due to the space limitation.
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4 Experimental Evaluation

To test the efficiency of the algorithms, we generate the synthetic data sets ac-
cording to the random graph [10] model that links each node pair by probability
p. All generated graphs are vertex labeled undirected connected graphs. We also
randomly label vertices so that the vertex labels are uniformly distributed. We
implement the algorithm in C++, and carry out our experiments on a Windows
2003 server machine with Intel 2GHz CPU and 1G main memory.

The efficiency of the algorithms is influenced by the following factors: N1:
node size of G1, N2: node size of G2, M1: average degree of G1, M2: average
degree of G2, (L, H): the minimal and maximal path length. The efficiency also
can be influenced by the number of vertex labels.
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Fig. 7. Efficiency and scalability with respect to the growth of size of data graph (G2).
The inset of (a), (b) show runtime of all running cases where the determination result
is true, false respectively.

First we will demonstrate the scalability with respect to the growth of the
size of nodes of data graph G2. We use a complete graph with 4 uniquely labeled
nodes as a minor graph; we generate overall 200 data graphs G2 with node size
varying from 20 to 4000 in increment of 20. The average degree of each data
graph is fixed as 4 and nodes of each graph are randomly labeled as one of
overall 20 labels. L and H are fixed as 1 and 3, respectively, meaning that the
path length is in the range of [1, 3]. Thus the parameters can be denoted as
N14M13M24L1H3. From Figure 7, we can see that ndSHD1 and ndSHD2 both
are approximately linearly scalable with respect to the number of nodes in G2,
irrespective of the result of the determination.

Next we will show the scalability of ndSHD1 and ndSHD2 with respect to the
size of G1. We fix some parameters as M14N24kL1H3 and vary the size of G1
from 6 to 82 in increment of 4 to generate 20 minor graphs. Each minor graph
is uniquely labeled. Two data graphs are used, one has average degree M2 as 8
and the other as 20. These two data graphs are randomly labeled as one of 200
labels. Figure 8(a)(I) (M2 = 8) and (II) (M2 = 20) show the results. As can
be seen, ndSHD1 and ndSHD2 both are approximately linearly scalable with
respect to the number of nodes in G1. In (II), running time of ndSHD1 is not
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Fig. 8. Scalability of two algorithms

available when M2 = 20, meaning that all running cases need time larger than
one hour.

Figure 8(b) shows the runtime of the algorithm with respect to (l, h). Pa-
rameters of this experiment are set as N14M13N21kM28L1. The minor graph
is uniquely labeled; data graphs are randomly labeled as one of 20 labels. As
can been seen, the broader the range is, the longer the running time is; and the
runtime of ndSHD1 and ndSHD2 both increase dramatically with the growth
of upper bound of path length. However, the increasing speed of ndSHD2 is
slower than that of ndSHD1, which implies that ndSHD2 is more efficient than
ndSHD1 with respect to larger h. The super linearly growth of the runtime with
the increase of upper bound of the path length can be partly attributed to the
exponential growth of the number of potentially mapped paths. However, in
various real applications, larger upper bound of path length is non-meaningful
when performing fuzzy matching on graph data, and usually upper bounds less
than 3 are desired.

To examine the impact of the number of vertex labels on the performance of
ndSHD1 and ndSHD2, we use a uniquely labeled graph with 6 nodes and 15
edges as minor graph, a graph with 1000 nodes and 4000 edges as data graph.
We randomly labeled the data graph from 10 labels to 200 labels in increment
of 10 to generate 20 different labeled data graphs. L and H are set as 1 and
3, respectively. The result of this experiment is shown in Figure 8(c). Clearly,
runtime of ndSHD1 and ndSHD2 substantially decrease with the growth of
number of labels of G2, which confirms to what we have expected, since larger
number of labels in G2 can reduce the node mapping space between minor graph
and data graph. We also can see that ndSHD2 outperforms ndSHD1 to a great
extent when the number of labels is small.

5 Conclusions

In this paper, we investigated the problem known as node disjoint subgraph home-
omorphism determination; and proposed two practical algorithms to address this
problem, where many efficient heuristics have been exploited to prune the futile
searching space. The experimental results on synthetic data sets show that our al-
gorithms are scalable and efficient. To the best of our knowledge, no practical algo-
rithm is available to solve node disjoint subgraph homeomorphism determination.
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