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Abstract

Graph kernels provide an expressive approach to mea-
suring the similarity of two graphs, and are key build-
ing blocks behind many real-world applications, such
as bioinformatics, brain science and social networks .
However, current methods for computing graph kernels
assume the input graphs are static, which is often not
the case in reality. It is highly desirable to track the
graph kernels on dynamic graphs evolving over time in
a timely manner. In this paper, we propose a family of
Cheetah algorithms to deal with the challenge. Chee-

tah leverages the low rank structure of graph updates
and incrementally updates the eigen-decomposition or
SVD of the adjacency matrices of graphs. Experimental
evaluations on real world graphs validate our algorithms
(1) are significantly faster than alternatives with high
accuracy and (b) scale sub-linearly.

1 Introduction

Graph is a natural data structure for modeling a system
with interacting objects. It appears in a variety of high-
impact application domains, ranging from bioinformat-
ics [3], mobile network [36], brain science [10], trans-
portation networks [8] to social media mining [35]. For
instance, in bioinformatics [3], large volume of graph-
structured data emerges, e.g., proteins are modeled by
graphs comprised of molecules. These graph structures
might indicate the function of the proteins. In Internet,
the Web itself is a huge graph where nodes are HTML
documents and the edges are the hyperlinks. In social
media, the graph data is generated at an unprecedented
rate. Facebook alone has over 1.32 billion monthly ac-
tive users [1] . Nodes in social graphs are individuals
and edges represent friendship/follow/influence.

Many important graph mining algorithms require a
good similarity measure of two graphs. In the above
bioinformatics case, protein function prediction can be
achieved by comparing to proteins with similar struc-
ture and with known function. Graph kernels [32] pro-
vide an expressive approach to measuring such simi-
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larity. Among others, random walk based graph ker-
nel [12, 19] considers the overall structure of graphs
and it works when the node correspondence between
two input graphs is unknown (see Section 6 for detailed
review). In practice, a major bottleneck for random
walk based graph kernel lies in its computational cost,
as the exact method takes O(n3) or O(m2) time, where
n and m are the numbers of nodes and edges of the in-
put graphs, respectively [32]. Many approximate meth-
ods exist to speed up its computation. To date, the
state-of-the-art algorithm for computing random walk
based graph kernel [18] leverages the fact that real world
graphs often exhibit much lower intrinsic ranks r com-
pared to their actual size n. Compared with the exact
method, it significantly reduces the time complexity to
O(n2r) or O(mr) with a high approximation accuracy.

Nonetheless, all the current methods for computing
graph kernels assume the input graphs are static, which
is often not the case in reality. For example, hosts on
the Web can be down for maintenance, hundreds of
thousands new users register on online social networks
every day. How to e�ciently track the similarity of
time evolving graphs is a great challenge. Simply re-
calculating the graph kernel at each time step is not
realistic for fast decision making. For example, even
with the prior fastest method [18], it would still require
O(n2r) or O(mr) at each time stamp to update the
graph kernel.

To address the above challenge, we propose a fam-
ily of fast algorithms (code named Cheetah) for track-
ing the graph kernels of dynamic graphs e�ciently. The
computational bottleneck of [18] is that the low rank
approximation needs to be re-calculated for each new
graph, which is very costly in the dynamic setting. We
address this by incrementally updating the low rank
structure after seeing an incoming graph update. Our
algorithms (1) leverage the low rank properties of the
graph updates and (2) incrementally and accurately
update the low rank approximation in a fast manner.
Specifically, for undirected graphs, we propose Cheetah-
U by incrementally updating the eigenvalue decompo-
sition (EVD); for directed graphs, we design Cheetah-

D by e�ciently updating the singular value decomposi-
tion (SVD). The experimental evaluations on real world
graphs show that the proposed algorithms (1) are signif-



Table 1: Symbols
Symbols Definition

G a graph
A(t) adjacency matrix at time t

�A(t) di↵erence matrix of the graph at
time t

U(t),⇤(t) eigen pair of A(t)

Ker(t)(G1,G2) exact graph kernel function on
graphs G1 and G2 at time t

K̂er
(t)
(G1,G2) approximate graph kernel func-

tion on graphs G1 and G2 at
time t

n number of nodes in a graph
m number of edges in a graph
c decay factor in random walk ker-

nel
dn number of node labels
r reduced rank after low rank ap-

proximation of A(t)

r0 reduced rank after low rank ap-
proximation of �A(t)

icantly faster than the existing alternatives; (2) achieve
very high approximation accuracy with proven error
bounds and (3) scale sub-linearly.

The main contributions of this paper are summa-
rized as follows:

1. Problem Definitions. We define the novel
Graph Kernel Tracking problem, to track the
kernel of time evolving graphs. To our best knowl-
edge, this is the first e↵ort on this important topic.

2. Algorithm and Analysis. We propose a family
of fast algorithms (Cheetah) for Graph Kernel

Tracking and analyze its approximation error
bounds as well as the complexity.

3. Experimental Evaluations. We perform exten-
sive experiments on real world graphs, to validate
the e↵ectiveness and e�ciency of our algorithm.

The rest of the paper is organized as follows. Sec-
tion 2 defines Graph Kernel Tracking . Section 3
and 4 present the proposed Cheetah algorithms for both
undirected and directed graphs. Section 5 shows the
experimental results. After reviewing related work in
Section 6, we conclude the paper in Section 7.

2 Problem Definition

Table 1 lists the main symbols used throughout the
paper. We use bold upper-case letters for matrices

(e.g., A) and bold lower-case letters for vectors (e.g., v).
Parenthesized superscript is used to denote time (e.g.,
A(t) is the time-aggregate adjacency matrix at time t).
For matrix indexing, we use a convention similar to
Matlab, e.g., A(i, j) is the element at the ith row and jth

column of the matrix A, and A(:, j) is the jth column
of A, etc. Besides, we use prime for matrix transpose
(e.g., A0 is the transpose of A).

For two static graphs G1 and G2 with adjacency
matrices A1 and A2, the random walk based graph
kernel between them can be computed as follows [32]:

(2.1)
Ker(G1,G2) = (q1

0⌦q2
0)(I� cA1

0⌦A2
0)�1(p1⌦p2)

where c is a decay factor for discounting longer
walks, p1,p2 are starting probabilities for G1,G2 and
q1,q2 are ending probabilities for G1,G2. The idea is
to sum up all common walks with all possible lengths
on the two graphs. The most time consuming part
is the matrix inverse. The state-of-the-art algorithm
proposed in [18] greatly reduces the computation cost
by performing low rank approximation on both A1 and
A2, following the observation that real world graphs
have low intrinsic ranks.

In the dynamic setting, initially at time step t = 0,
we observe the two graphsG1 andG2 and their random
walk graph kernel can be computed in the same way as
in the static case above. At each time step, both graphs
can evolve (e.g., nodes and edges are added/deleted,
and edge weight changes). We use �A(t) to denote
such updates of G at time step t. For example, given a
co-author network for an annual conference, �A(t)(i, j)
is the number of papers authors i and j write together
for the conference at year t. With these notations, our
problem can be formally defined as follows:

Problem 1. Graph Kernel Tracking

Given: (1) adjacency matrices A1 and A2 of two time-

evolving graphs G1 and G2 at initial time step,

(2) a sequence of updates �A1
(t)

and �A2
(t), (t =

1, 2, . . .)

Track: the graph kernel Ker(t)(G1,G2), (t = 1, 2, . . .)

As mentioned above, algorithm in [18] speeds up
the random walk graph kernel by computing the low
rank approximation for both graphs. However, in the
dynamic setting, it would be very costly to re-compute
the low-rank approximation of the input graphs at
each time step. Based on this observation, we devote
ourselves to searching for e�cient ways to track the low-
rank approximation of the input graphs. Depending
on whether the input graphs are undirected or directed



graphs, we present two such algorithms in the next two
sections, respectively.

3 Cheetah-U for Undirected Graphs

In this section, we address Graph Kernel Tracking

for undirected graphs. We first present our proposed
algorithm, followed by some analysis in terms of its
accuracy as well as complexity.

3.1 The Proposed Algorithm
The heart of our algorithm for undirected graphs is an
e↵ective subroutine to track the eigen-decomposition
of the adjacency matrices of the two corresponding
graphs over time. To be specific, we define the eigen-
decomposition tracking problem as follows.

Problem 2. EVD Tracking

Given: (1) the adjacency matrix A of a time-evolving

undirected graph G at initial time step, (2) a

sequence of updates �A(t), (t = 1, 2, . . .);

Track: the corresponding eigenvectors U(t)
, and eigen-

values ⇤(t), (t = 1, 2, . . .).

Once we have a subroutine UpdateEigen to e�-
ciently solve Problem 2, we propose Cheetah-U (Algo-
rithm 1) to e�ciently solve Problem 1. In Cheetah-U,
we first obtain the eigen-decomposition of the newly up-
dated graphs using the subroutine UpdateEigen without
re-calculating the EVD again (line 1,2), which could
lead to huge savings in terms of computation time. The
new eigen pairs are then used to calculate graph ker-
nel after the updates (line 3-6) using the algorithm in
[18]. Notice that in Cheetah-U it assumes that the in-
put graphs have no attribute information. We would
like to point out that the proposed Cheetah-U can be
naturally generalized to incorporate the attribute infor-
mation when it is available.

Now the crucial question becomes how to design an
e�cient subroutine UpdateEigen. In this paper, we pro-
pose an e↵ective method for EVD Tracking , which
is summarized in Algorithm 2. The key idea of Upda-
teEigen is as follows. For real world graphs, the up-
dates �A often have very low ranks (e.g., few nodes
being wired to few other nodes), which can be in turn
exploited to e↵ectively update EVD. More specifically,
we first obtain the eigen-decomposition of the graph up-
date (line 1) and perform a partial QR decomposition
on the block matrix composed of original graph’s eigen-
vectors (U0) and its update matrix’s eigenvectors (X)
(line 2). Since U0 is already orthonormal, the QR pro-
cedures start from columns in X. We construct a new
matrix Z from the upper triangle matrix of the QR de-
composition and the eigenvalues of the graph and its

Algorithm 1 Cheetah-U : graph kernel tracking for
undirected graphs

Input: (1) top r eigen decomposition U1
(t�1), ⇤1

(t�1)

and U2
(t�1), ⇤2

(t�1) of A1
(t�1) and A2

(t�1); (2)
updates �A1

(t) and �A2
(t) to G1 and G2 at time

step t; (3) starting and ending probability p1 and
q1 for G1; (4) starting and ending probability p2

and q2 for G2;
Output: graph kernel ker(t)(G1,G2) at time step t

1: Update eigen decomposition of A1
(t):

U1
(t),⇤1

(t)  UpdateEigen(U1
(t�1),⇤1

(t�1),�A1
(t))

2: Update eigen decomposition of A2
(t):

U2
(t),⇤2

(t)  UpdateEigen(U2
(t�1),⇤2

(t�1),�A2
(t))

3: ⇤̃ ((⇤1
(t) ⌦⇤2

(t))�1 � cI)�1

4: L q1
0U1

(t) ⌦ q2
0U2

(t)

5: R U1
(t)0p1 ⌦U2

(t)0p2

6: ker(t)(G1,G2) (q1
0p1)(q2

0p2) + cL⇤̃R

update (line 3) and perform a full EVD of Z (line 4).
Z’s eigenvector rotates the orthonormal basis of the QR
decomposition to get the new eigenvectors U (line 5)
and Z’s eigenvalues are the new eigenvalues (line 6).

Notice that there are several alternative choices to
update the EVD of a time evolving graph, such as those
based on matrix perturbation theory and its high-order
variant. However, these methods implicitly assume that
the new eigenvectors share the same subspace as that
of the old eigenvectors, which could be easily violated
in real applications. In contrast, Algorithm 2 does
not have such a constraint and thus avoids introducing
the additional approximation error during the updating
process.

Algorithm 2 UpdateEigen (subroutine for EVD Track-
ing)

Input: Eigen decomposition of A0: U0,⇤0, update
�A

Output: Eigen decomposition of A = A0+�A: U,⇤

1: Eigen decomposition of �A: XYX0  �A
2: Perform Partial QR decomposition of [U0,X]:

[U0,�Q]R QR(U0,X)
3: Set Z = R[⇤0 0;0 Y]R0

4: Perform full eigen decomposition of Z: V⇤V0  Z
5: Set U [U0,�Q]V
6: Return: U and ⇤

3.2 Proofs and Analysis
In this subsection, we provide some analysis of the



proposed Cheetah-U algorithm in terms of its accuracy
and complexity. Let us start with the accuracy of
the subroutine UpdateEigen, which is summarized in
Lemma 3.1. According to Lemma 3.1, the only place
that we might introduce the approximation error is
the initial eigen-decomposition for A

0

; and updating
process itself will not introduce additional error.

Lemma 3.1. (Correctness of UpdateEigen). If A
0

=
U

0

⇤
0

U0
0

holds, algorithm 2 gives the exact eigen-

decomposition of the udpated graph A.

Proof. For a undirected graph, both A0,�A are sym-
metric, we can write their eigen-decomposition as fol-
lows:

A0 = U0⇤0U0
0

�A = XYX0,

whereU0, ⇤0 are the eigen pairs ofA
0

andX,Y are the
eigen pairs of �A. After the update, we have following
equation:

A = A0 +�A
= U0⇤0U0

0 +XYX0

=
⇥
U0 X

⇤ ⇤0 0
0 Y

� ⇥
U0 X

⇤0

Denoting [U0 X] by Ũ, we perform a decomposition
on Ũ similar to QR decomposition and have

Ũ =
⇥
U0 �Q

⇤ I R1

0 R2

�
,

where [U0 �Q] is orthonormal and


I R1

0 R2

�
is an

upper triangle matrix. Note the di↵erence of the
decomposition here from standard QR decomposition is
that since U0 is already orthonormal, we only need to
start from the first column of X to perform the Gram-
Schmidt procedure. It follows that

A = Ũ


⇤0 0
0 Y

�
Ũ0

=
⇥
U0 �Q

⇤ I R1

0 R2

� 
⇤0 0
0 Y

� 
I R1

0 R2

�0 
U0

0

�Q0

�

Denoting


I R1

0 R2

� 
⇤0 0
0 Y

� 
I R1

0 R2

�0
by Z, we do

a full eigen decomposition on it and have Z = VLV0,
where V and L are its eigen pairs. Therefore, the
updated graph A can be written as

A =
⇥
U0 �Q

⇤
V

| {z }
U

L|{z}
⇤

V0

U0

0

�Q0

�

| {z }
U0

= U⇤U0,

where U and ⇤ will be the new eigen pairs of the
updated graph A.

Summarizing the above procedures, we have the
exact EVD update algorithm in Algorithm 2.

Next, we analyze the tracking quality of Cheetah-U,
which is summarized in Theorem 3.1.

Theorem 3.1. (Error Bound of Cheetah-U) In

Cheetah-U, if we use the subroutine UpdateEigen, the

relative error of the approximate random walk kernel

after one update is bounded by:

(3.2) RelErr  f(c,�)

(1�c(�(1)
1 +�)(�(1)

2 +�))g(c,⌘)�f(c,�)

where RelErr = |Ker

(1)
(G1,G2)� ˆ

Ker

(1)
(G1,G2)|

Ker

(1)
(G1,G2)

,

f(c, �) = c
P

(i,j)/2H �
(i)
1

�
(j)
2

+ c�
P

i/2H(�(i)
1

+ �
(i)
2

),

g(c, �) =
q

c2(�(1)

1

� �)2(�(1)

2

� �)2 + n2

, � =

max(k�A1kF , k�A2kF ),�(i)
1

and �
(i)
2

are the

i-th largest eigenvalues of A1 and A2, and

H = {(a, b)|a, b 2 [1, r]}.
Proof. To calculate the exact kernel after one update,
we have the following equation:
(3.3)

Ker(1)(G1,G2) = q0(I� c(A1 +�A1)⌦ (A2 +�A2))
�1p

where q0 = q1
0 ⌦ q2

0 and p = p1 ⌦p2, kpk1 = kqk
1

=
1, A1,A2 are the adjacency matrices of the original
two graphs G1,G2 and �A1,�A2 are their updates.
Using UpdateEigen in Cheetah-U by Lemma 3.1, the
only error introduced is the low rank approximations of
A1 and A2. Therefore, our approximated kernel can be
computed as:
(3.4)

K̂er
(1)

(G1,G2) = q0(I� c(Â1 +�A1)⌦ (Â2 +�A2))
�1p

where Â1, Â2 are rank r-approximations of A1,A2.
Let M be I� c(A1 +�A1)⌦ (A2 +�A2) and M̂ be
I� c(Â1 +�A1)⌦ (Â2 +�A2). The Frobenius norm
of their di↵erence matrix is upper bounded:

(3.5)
kM� M̂kF
= kc(A1 +�A1)⌦ (A2 +�A2)
�c(Â1 +�A1)⌦ (Â2 +�A2)kF
= kc(A1 ⌦A2 � Â1 ⌦ Â2) + c(A1 � Â1)⌦�A2

+c�A1 ⌦ (A2 � Â2)kF
 kc(A1 ⌦A2 � Â1 ⌦ Â2)kF + ckA1 � Â1kF k�A2kF
+ck�A1kF kA2 � Â2kF
 c

P
(i,j)/2H �

(i)
1

�
(j)
2

+ c�
P

i/2H(�(i)
1

+ �
(i)
2

)

where � = max(k�A1kF , k�A2kF ).



We know that

(3.6)
�
max

(A1 +�A1) = kA1 +�A1k2
 kA1k2 + k�A1k2
 �

(1)

1

+ �

Therefore, the condition number of M is also upper
bounded:(M)  1

1�c(�(1)
1 +�)(�(1)

2 +�)
.

On the other hand, by triangle inequality,

(3.7)
k(A1 +�A1)⌦ (A2 +�A2)kF
= kA1 +�A1kF kA2 +�A2kF
� (�(1)

1

� �)(�(1)

2

� �)

Since we don’t consider graphs with self-loops, i.e.,
adjacency matrices here have all zeros on the diagonal,
it follows that
(3.8) kMkF �

q
c2(�(1)

1

� �)2(�(1)

2

� �)2 + n2.

From matrix perturbation analysis [14], we have the
upper bound for the relative error:

(3.9)

|Ker

(1)
(G1,G2)� ˆ

Ker

(1)
(G1,G2)|

Ker

(1)
(G1,G2)

= q0
(M�1� ˆM�1

)p

q0
ˆM�1p

 kM�1� ˆM�1kF

kM�1kF

 (M)

kM�M̂kF
kMkF

1�(M)

kM�M̂kF
kMkF

 f(c,�)

(1�c(�(1)
1 +�)(�(1)

2 +�))g(c,⌘)�f(c,�)

Finally, we analyze the complexities of Algorithm 1
and 2. As can be seen from Theorem 3.2, both
algorithms have linear time and space complexities wrt
the size of graph n. r and r0 are reduced rank of A and
�A respectively, which are small constants. Therefore,
the algorithms are scalable for large graphs.

Theorem 3.2. (Complexities of Cheetah-U and Upda-

teEigen) Algorithm 2 takes O(n(r2 + r02)) time and

O(n(r+r0)) space. Algorithm 1 takes O(n(r2+r02)+r2)
time and O(n(r + r0) + r02) space.

Proof. Omitted for brevity.

4 Cheetah-D for Directed Graphs

In this section, we address Graph Kernel Tracking

for directed graphs. We first present the proposed
algorithm, followed by some complexity analysis.

4.1 The Proposed Algorithm
Similar as in the undirected graph case, an e↵ective
subroutine to track SVD of the adjacency matrices
of the two corresponding directed graphs over time is
needed. To be specific, we define the SVD tracking
problem as follows:

Problem 3. SVD Tracking

Given: (1) the adjacency matrix A of a time-evolving

directed graph G at initial time step, (2) a sequence

of updates �A(t), (t = 1, 2, . . .);

Track: the corresponding left and right singular vectors

U(t)
,V(t)

and singular values ⇤(t), (t = 1, 2, . . .).

We propose an e↵ective method for SVD Track-

ing as summarized in Algorithm 4. The key idea is
similar to UpdateEigen. The di↵erence is that SVD
is used for exploiting the low rank structure of the
graph updates instead of EVD. Once we have a sub-
routine UpdateSVD to e�ciently solve Problem 3, we
propose Cheetah-D (Algorithm 3) to e�ciently solve
Problem 1. In Cheetah-D, we first obtain SVD of the
updated graphs (line 1,2) and then use that for graph
kernel computation using algorithm in [18]. Note that
Cheetah-D can also be generalized to incorporate the
attribute information.

Algorithm 3 Cheetah-D : graph kernel tracking for
directed graphs

Input: (1) top r SVD U1
(t�1), ⇤1

(t�1), V1
(t�1) and

U2
(t�1), ⇤2

(t�1) , V2
(t�1) of A1

(t�1) and A2
(t�1);

(2) updates �A1
(t) and �A2

(t) to G1 and G2 at
time step t; (3) starting and ending probability p1

and q1 for G1; (4) starting and ending probability
p2 and q2 for G2;

Output: ker(t)(G1,G2) at time step t

1: Update SVD of A1
(t):

U1
(t),⇤1

(t),V1
(t)  UpdateSVD(U1

(t�1),⇤1
(t�1),

V1
(t�1),�A1

(t))

2: Update SVD of A2
(t):

U2
(t),⇤2

(t),V2
(t)  UpdateSVD(U2

(t�1),⇤2
(t�1),

V2
(t�1),�A2

(t))

3: ⇤̃ ((⇤1
(t)⌦⇤2

(t))�1� c(V1
(t)0⌦V2

(t)0)(U1
(t)⌦

U2
(t)))�1

4: L q1
0U1

(t) ⌦ q2
0U2

(t)

5: R V1
(t)0p1 ⌦V2

(t)0p2

6: ker(t)(G1,G2) (q1
0p1)(q2

0p2) + cL⇤̃R

4.2 Proofs and Analysis
In this subsection, we begin with the correctness proof
of subroutine UpdateSVD summarized in Lemma 4.1,
followed by complexity analysis.

Lemma 4.1. (Correctness of UpdateSVD). If A
0

=
U

0

⇤
0

V0
0

holds, algorithm 4 gives the exact singular

value decomposition of the udpated graph A.



Algorithm 4 UpdateSVD (subroutine for SVD Track-
ing)

Input: SVD of A0: U0,⇤0,V0, update �A
Output: SVD of A = A0 +�A: U,⇤,V

1: SVD of �A: XYZ0  �A
2: Perform Partial QR decomposition of [U0,X]:

[U0,�Q]S QR(U0,X)
3: Perform Partial QR decomposition of [V0,Z]:

[V0,�Z]T QR(V0,Z)
4: Set W = S[⇤0 0;0 Y]T0

5: Perform Full SVD of W: L⇤R0  W
6: Set U [U0,�Q]L
7: Set V [V0,�Z]R
8: Return: U,⇤,V

Proof. Omitted for brevity.

Theorem 4.1. (Complexities of Cheetah-D and Up-

dateSVD) Algorithm 4 takes O(n(r2 + r02)) time and

O(n(r + r0)) space. Algorithm 3 takes O(n2r4 + n(r2 +
r02) + r6) time and O(n2r2 + n(r + r0) + r02) space.

Proof. Omitted for brevity.

5 Experiment

In this section, we present the experimental results for
the proposed Cheetah. The experiments are designed to
evaluate the following aspects:

• E↵ectiveness: How accurate is our algorithm for
tracking graph kernels over time?

• E�ciency: How fast is our proposed algorithm?

5.1 Datasets We use two real world dynamic graphs
for case study and performance evaluations as follows:

• MTA bus tra�c. We collect real time bus tra�c
data in New York City using the API provided at
MTA Bus Time 1. Tra�c volume at 30 bus stops
on 3 routes are monitored from Monday, March 24,
2014 to Sunday, March 30, 2014. On each day,
we first obtain tra�c volume within each hour as
a time series for each bus stop and then build a
causality graph for these 30 stops using Granger
causality test [15].

• AS. This is the communication network of routers
constructed by BGP logs in Autonomous Systems
(AS) [21]. The dataset contains 733 daily instances
which span an interval of 785 days from November

1
Available at http://bustime.mta.info
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Figure 1: Case study – real time MTA bus tra�c.
Causality graphs are shown in the small blocks.

8, 1997 to January 2, 2000. AS exhibits both
addition and deletion of nodes and edges over the
time span. The number of nodes ranges from 103
to 6474 and the number of edges ranges from 243
to 13,233.

5.2 E↵ectiveness Results
Case study on MTA bus tra�c: Normalized graph
kernels2 are computed on two graphs of two consecutive
days, e.g., kernels of Monday and Tuesday, Tuesday and
Wednesday. Figure 1 shows the trend of kernels over a
week. Kernels between weekdays change smoothly. We
observe a sharp drop of the kernel between Friday and
Saturday, which reflects the fact that tra�c patterns
on weekdays and weekends are di↵erent since MTA
runs completely di↵erent bus schedules during weekdays
and weekend. The kernel goes up on Sunday because
Saturday and Sunday share similar tra�c patterns.
Accuracy vs. time stamp: In order to evaluate how
accurate our method is for tracking graph kernels, we
extract two graphs from AS, each of size n = 3328.
At each time stamp, we randomly pick 50 nodes and
add an edge from each to 100 other random nodes. We
use relative error computed as below for our evaluation
criteria:

(5.10) Relative Error =
|Ker(G1,G2)� K̂er(G1,G2)|

Ker(G1,G2)

Figure 2 shows relative error of Cheetah-U at
di↵erent time stamps with di↵erent reduced rank r while
r0 is fixed. Here r0 is the reduced rank of update
matrix, i.e., we perform top-r0 eigen decomposition
on �A in UpdateEigen. Similar trend is seen with
di↵erent r0 while r is fixed. The figure clearly shows
(1) the accumulated error of our method grows slowly
(sublinearly) over time; and (2) the overall accumulated

2
The graph kernel is normalized by the number of edges.



0.000%
0.002%
0.004%
0.006%
0.008%
0.010%
0.012%
0.014%
0.016%
0.018%
0.020%

0 5 10 15 20 25 30

R
el

at
iv

e 
E

rr
or

Time Stamp

r=100 r=200 r=300 r=400 r=500

Figure 2: Relative error of Cheetah-U via UpdateEigen

on AS at di↵erent time stamp with di↵erent r.
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Figure 3: Average error vs. reduced rank r. Each curve
has di↵erent reduced rank r0 for the update matrix in
UpdateEigen.

error is very small (less than 0.02%). Notice that, results
using the alternative methods for updating eigen pairs
(referred to as ‘first-order’ and ‘second-order’) are not
shown here since even at t = 1 the error is in the order
of 104.
Accuracy vs. rank: In order to evaluate how accuracy
of Cheetah-U changes with respect to the reduced rank
r, we run the above experiment under di↵erent r and
average the relative error over 10 time stamps. To
see how the approximation of the updates a↵ects the
accuracy, we also vary the reduced rank r0. As can
be seen from Figure 3, the error quickly drops when r
increases.

5.3 E�ciency Results
Running time vs. rank: We compare the speed of
Cheetah-U with ARK-U+ proposed in [18] varying
reduced rank r and average the running time over 10
time stamps. We set reduced rank of update matrix as
r0 = 5. Figure 4 clearly shows that our method is much
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Figure 4: Running time of Cheetah-U on AS with
di↵erent reduced rank r.
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Figure 5: Running time of Cheetah-U on AS with
di↵erent graph size n and reduced rank r.

faster than ARK-U+.
Scalability: In order to evaluate the scalability of our
method, we run Cheetah-U on graphs with di↵erent
sizes n. Figure 5 shows the running time under di↵erent
r while fixing r0 = 5. Similar trend is seen with di↵erent
r0 while fixing r. From the figure, we can see that the
running time grows linearly wrt the size of the input
graphs, which is consistent with our complexity analysis
in Theorem 3.2.
Quality vs. speed: Finally, we evaluate how the pro-
posed method balances between the quality and speed.
In Figure 6, we show relative error vs. running time of
di↵erent methods. Each dot in the figure is with di↵er-
ent reduced rank r. Clearly, our method achieves the
best trade-o↵ between quality and time.

6 Related Work

In this section, we review the related work in terms of
(a) graph kernel, (b) dynamic graph mining.

Graph Kernel. Graph kernel provides an expres-
sive and non-trivial measure of similarity on graphs
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methods on AS.

(see [4] for a comprehensive review). It has seen appli-
cations ranging from automated reasoning [31] to bioin-
formatics/chemoinformatics [11, 26]. A recent interest-
ing work uses graph kernel to address team member
replacement problem [22]. According to what substruc-
tures used for comparison in two graphs, graph kernels
can be summarized into three categories: kernels based
on walks [12, 32, 33, 13, 5], kernels based on limited-
sized subgraphs [17, 25, 20] and kernels based on sub-
tree patterns [23, 24, 16]. Among them, graph kernel
based on random walk has been successfully applied in
many real world scenarios [6]. The idea is to count the
number of common walks when simultaneous walks are
performed on the two graphs. One challenge of ran-
dom walk based graph kernel lies in computational cost.
The best known time complexity for exact computation
is O(n3) by reducing to the problem of solving a lin-
ear system [32, 33]. With low rank approximation, the
computation can be further accelerated with high ap-
proximation accuracy [18].

Dynamic Graph Mining. Most real world
graphs are evolving over time, hence it’s of practical
value to track some properties of the dynamic graphs,
and do it in an e�cient way. To track the low-rank
approximation of graphs, CMD [28] computes sparse
example-based decompositions by sampling from the
original matrix without duplications. Colibri meth-
ods in [29] further speed up the computation by judi-
ciously sampling linearly independent columns. Evolu-
tionary Nonnegative Matrix Factorization (eNMF) [34]
incrementally updates the factorized matrices assum-
ing smoothness between two consecutive time stamps.
Proximity and centrality are two important measures on
graphs. To monitor these, fast algorithms on bipartite
graphs are designed [30] by leveraging the fact that rank
of graph updates is small. Our work di↵ers from [30] in
that we track the similarity of two graphs while authors
in [30] focus on similarity of two nodes on one graph.

As for communities in dynamic graphs, work include
studying how social groups form and evolve [2], finding
communities in dynamic graphs and spotting disconti-
nuity time points [27]. On a single dynamic graph, there
are also many work on tracking its spectrum [7, 9].
7 Conclusion

In this paper, we propose Cheetah to e�ciently track
the graph kernels of two time-evolving graphs. To the
best of our knowledge, we are the first to study kernel
tracking in dynamic setting. The main contributions
include:

1. Problem Definitions. A novel Graph Kernel

Tracking problem is first defined, along with two
derivative problems:EVD Tracking and SVD

Tracking .

2. Algorithm and analysis. A family of Cheetah al-
gorithms are proposed to address the above prob-
lems. We show the correctness and analyze the
complexities of the algorithms.

3. Experimental Evaluations. Case study and
performance evaluation on real world data present
the usefulness and superiority of our algorithms.

Our work can be generalized to attributed graphs while
such attribute information remains the same. However,
in reality, attributes can also change with time, e.g., in
citation network, an author’s interest might shift from
computer vision to data mining. One future direction is
to design algorithms for graph kernel tracking that can
also capture such attribute dynamics.
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[17] T. Horváth, T. Gärtner, and S. Wrobel. Cyclic pattern
kernels for predictive graph mining. In KDD, pages
158–167, 2004.

[18] U. Kang, H. Tong, and J. Sun. Fast random walk graph

kernel. In SDM, pages 828–838, 2012.
[19] H. Kashima, K. Tsuda, and A. Inokuchi. Marginalized

kernels between labeled graphs. In ICML, pages 321–
328, 2003.

[20] R. I. Kondor, N. Shervashidze, and K. M. Borgwardt.
The graphlet spectrum. In ICML, page 67, 2009.

[21] J. Leskovec, J. M. Kleinberg, and C. Faloutsos. Graphs
over time: densification laws, shrinking diameters and
possible explanations. In KDD, pages 177–187, 2005.

[22] L. Li, H. Tong, N. Cao, K. Ehrlich, Y.-R. Lin,
and N. Buchler. Replacing the irreplaceable:
Fast algorithms for team member recommendation.
arXiv:1409.5512, 2014.
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