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ABSTRACT
Question answering (QA) has become a popular way for humans to
access billion-scale knowledge bases. Unlike web search, QA over
a knowledge base gives out accurate and concise results, provid-
ed that natural language questions can be understood and mapped
precisely to structured queries over the knowledge base. The chal-
lenge, however, is that a human can ask one question in many dif-
ferent ways. Previous approaches have natural limits due to their
representations: rule based approaches only understand a small set
of “canned” questions, while keyword based or synonym based ap-
proaches cannot fully understand the questions. In this paper, we
design a new kind of question representation: templates, over a
billion scale knowledge base and a million scale QA corpora. For
example, for questions about a city’s population, we learn tem-
plates such as What’s the population of $city?, How
many people are there in $city?. We learned 27 mil-
lion templates for 2782 intents. Based on these templates, our QA
system KBQA effectively supports binary factoid questions, as well
as complex questions which are composed of a series of binary fac-
toid questions. Furthermore, we expand predicates in RDF knowl-
edge base, which boosts the coverage of knowledge base by 57
times. Our QA system beats all other state-of-art works on both
effectiveness and efficiency over QALD benchmarks.

1. INTRODUCTION
Question Answering (QA) has drawn a lot of research inter-

ests. A QA system is designed to answer a particular type of
questions [5]. One of the most important types of question-
s is the factoid question (FQ), which asks about objective fact-
s of an entity. A particular type of FQ, known as the bi-
nary factoid question (BFQ) [1], asks about a property of an
entity. For example, how many people are there in
Honolulu? If we can answer BFQs, then we will be able
to answer other types of questions, such as 1) ranking question-
s: which city has the 3rd largest population?;
2) comparison questions: which city has more people,
Honolulu or New Jersey?; 3) listing questions: list
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cities ordered by population etc. In addition to BFQ
and its variants, we can answer a complex factoid question such
as when was Barack Obama’s wife born? This can
be answered by combining the answers of two BFQs: who’s
Barack Obama’s wife? (Michelle Obama) and when was
Michelle Obama born? (1964). We define a complex fac-
toid question as a question that can be decomposed into a series
of BFQs. In this paper, we focus on BFQs and complex factoid
questions.

QA over a knowledge base has a long history. In recent years,
large scale knowledge bases become available, including Google’s
Knowledge Graph, Freebase [3], YAGO2 [16], etc., greatly in-
crease the importance and the commercial value of a QA system.
Most of such knowledge bases adopt RDF as data format, and they
contain millions or billions of SPO triples (S, P , and O denote
subject, predicate, and object respectively).
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Figure 1: A toy RDF knowledge base (here, “dob” and “pob” s-
tand for “date of birth” and “place of birth” respectively). Note
that the “spouse of” intent is represented by multiple edges:
name - marriage - person - name.

1.1 Challenges
Given a question against a knowledge base, we face two chal-

lenges: in which representation we understand the questions (repre-
sentation designment), and how to map the representations to struc-
tured queries against the knowledge base (semantic matching)?

• Representation Designment: Questions describe thousands of
intents, and one intent has thousands of question templates. For
example, both a© and b© in Table 1 ask about population of Hon-
olulu, although they are expressed in quite different ways. The
QA system needs different representations for different ques-
tions. Such representations must be able to (1) identify ques-
tions with the same semantics; (2) distinguish different ques-
tion intents. In the QA corpora we use, we find 27M question
templates over 2782 question intents. So it’s a big challenge to
design representations to handle this.
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• Semantic Matching: After figuring out the representation of
a question, we need to map the representation to a structured
query. For BFQ, the structured query mainly depends on the
predicate in the knowledge base. Due to the gap between pred-
icates and question representations, it is non-trivial to find such
mapping. For example, in Table 1, we need to know a© has the
same semantics with predicate population. Moreover, in RDF
graph, many binary relations do not correspond to a single edge
but a complex structure: in Figure 1, “spouse of” is expressed
by a path marriage → person → name. For the knowledge
base we use, over 98% intents we found correspond to complex
structures.

Table 1: Questions in Natural Language and Related Predicates in a
Knowledge Base

Question in Natural language Predicate in KB
a© How many people are there in Honolulu? population
b©What is the population of Honolulu? population
c©What is the total number of people in Honolulu? population
d©When was Barack Obama born? dob
e©Who is the wife of Barack Obama? marriage→person→name
f©When was Barack Obama’s wife born? marriage→person→name

dob

Thus, the key problem is to build a mapping between natural
language questions and knowledge base predicates through proper
question representations.

1.2 Previous Works
According to how previous knowledge based QA systems repre-

sent questions, we roughly classify them into three categories: rule
based, keyword based, and synonym based.

1. Rule based [23]. Rule based approaches map questions to pred-
icates by using manually constructed rules. This leads to high
precision but low recall (low coverage of the variety of question-
s), since manually creating rules for a large number of questions
is infeasible.

2. Keyword based [29]. Keyword based methods use keywords
in the question and map them to predicates by keyword match-
ing. They may answer simple questions such as b© in Table 1 by
identifying population in the question and mapping it to predi-
cate population in the knowledge base. But in general, using
keywords can hardly find such mappings, since one predicate
representation in the knowledge base cannot match diverse rep-
resentations in natural language. For example, we cannot find
population from a© or c©.

3. Synonym based [28, 33, 38, 37]. Synonym based methods ex-
tend keyword based methods by taking synonyms of the predi-
cates into consideration. They first generate synonyms for each
predicate, and then find mappings between questions and these
synonyms. DEANNA [33] is a typical synonym based QA sys-
tem. The main idea is reducing QA into the evaluation of se-
mantic similarity between predicate and candidate synonyms
(words/phrases in the question). It uses Wikipedia to com-
pute the semantic similarity. For example, question c© in Ta-
ble 1 can be answered by knowing that number of people
in the question is a synonym of predicate population. Obvi-
ously, their semantic similarity can be evaluated by Wikipedi-
a. gAnswer [38, 37] further improved the precision by learn-
ing synonyms for more complex sub-structures. However, al-
l these approaches cannot answer a© in Table 1, as none of
how many, people, are there has obvious relation with
population. How many people is ambiguous in different
context. In how many people live in Honolulu?, it

refers to population. In how many people visit New
York each year?, it refers to number of passengers.

In general, these works cannot solve the above challenges. For
rule based approaches, it takes unaffordable human labeling effort.
For keyword based or synonym based approaches, one word or one
phrase cannot represent the question’s semantic intent complete-
ly. We need to understand the question as a whole. And it’s even
tremendously more difficult for previous approaches if the question
is a complex question or maps to a complex structure in a knowl-
edge base (e.g. e© or f©).

1.3 Overview of Our Approach

Figure 2: Our Approach
To answer a question, we must first represent the question. By

representing a question, we mean transforming the question from
natural language to an internal representation that captures the se-
mantics and intent of the question. Then, for each internal repre-
sentation, we learn how to map it to an RDF query against a knowl-
edge base. Thus, the core of our work is the internal representation
which we denote as templates.

Representing questions by templates The failure of synonym
based approach in a© inspires us to understand a question by tem-
plates. As an example, How many people are there in
$city? is the template for a©. No matter $city refers to Honolu-
lu or other cities, the template always asks about population of the
question.

Then, the task of representing a question is to map the question
to an existing template. To do this, we replace the entity in the
question by its concepts. For instance, Honolulu will be replaced
by $city as shown in Figure 2. This process is not trivial, and it
is achieved through a mechanism known as conceptualization [25,
17], which automatically performs disambiguation on the input
(so that the term apple in what is the headquarter of
apple will be conceptualized to $company instead of $fruit).
The conceptualization mechanism itself is based on a large seman-
tic network (Probase [32]) that consists of millions of concepts, so
that we have enough granularity to represent all kinds of questions.

The template idea also works for complex questions. Using
templates, we simply decompose the complex question into a series
of question, each of which corresponds to one predicate. Consid-
er question f© in Table 1. We decompose f© into Barack
Obama’s wife and when was Michelle Obama
born?, which correspond tomarriage→ person→ name and
dob respectively. Since the first question is nested within the sec-
ond one, we know dob modifies marriage → person → name,
and marriage→ person→ name modifies Barack Obama.

Mapping templates to predicates We learn templates and their
mappings to knowledge base predicates from Yahoo! Answers.
This problem is quite similar to the semantic parsing [6, 7]. Most
semantic parsing approaches are synonym based. To model the cor-
relation between phrases and predicates, SEMPRE [2] uses a bipar-
tite graph, and SPF [18] uses a probabilistic combinatory categori-
al grammar (CCG) [8]. They still have the drawbacks of synonym
based approaches. The mapping from templates to predicates is
n : 1, that is, each predicate in the knowledge base corresponds to
multiple templates. For our work, we learned a total of 27, 126, 355
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different templates for 2782 predicates. The large amount guaran-
tees the wide coverage of template-based QA.

The procedure of learning the predicate of a template is as fol-
lows. First, for each QA pair in Yahoo! Answer, we extract the
entity in question and the corresponding value. Then, we find the
predicate from the knowledge base by looking up the direct predi-
cate connecting the entity and the value. Our basic idea is, if most
instances of a template share the same predicate, we map the tem-
plate to this predicate. For example, suppose questions derived
by template how many people are there in $city? al-
ways map to the predicate population, no matter what specific
$city it is. We can conclude that for certain probability the tem-
plate maps to population. Learning templates that map to a com-
plex knowledge base structure employs a similar process. The only
difference is that we find “expanded predicates” that correspond to
a path consisting of multiple edges which lead from an entity to a
certain value (e.g., marriage→ person→ name).

1.4 Paper Organization
The rest of the paper is organized as follows. In Sec 2, we give an

overview of KBQA. The major contribution of this paper is learn-
ing templates from QA corpora. All technique parts are close-
ly related to it. Sec 3 shows the online question answering with
templates. Sec 4 elaborates the predicates inference for templates,
which is the key step to use templates. Sec 5 extends our solution to
answer a complex question. Sec 6 extends the ability of templates
to infer complex predicates. We present experimental studies in
Sec 7, discuss more related works in Sec 8, and conclude in Sec 9.

2. SYSTEM OVERVIEW
In this section, we introduce some background knowledge and

give an overview of KBQA. In Table 2, we list the notations used
in this paper.

Table 2: Notations
Notation Description Notation Description
q question s subject
a answer p predicate
QA QA corpus o object
e entity K knowledge base
v value c category
t template p+ expanded predicate
V (e, p) {v|(e, p, v) ∈ K} s2 ⊂ s1 s2 is a substring of s1
t(q, e, c) template of q by θ(s) estimation of θ

conceptualizing e to c at iteration s

Binary factoid QA We focus on binary factoid questions
(BFQs), that is, questions asking about a specific property of an
entity. For example, all questions except f© in Table 1 are BFQs.

RDF knowledge base Given a question, we find its answer in
an RDF knowledge base. An RDF knowledge base K is a set of
triples in the form of (s, p, o), where s, p, and o denote subjec-
t, predicate, and object respectively. Figure 1 shows a toy RDF
knowledge base via an edge-labeled directed graph. Each (s, p, o)
is represented by a directed edge from s to o labeled with predicate
p. For example, the edge from a to 1961 with label dob represents
an RDF triple (a, dob, 1961), which represents the knowledge of
Barack Obama’s birthday.

Table 3: Sample QA Pairs from a QA Corpus
Id Question Answer

(q1, a1) When was Barack Obama
born?

The politician was born in
1961.

(q2, a2) When was Barack Obama
born?

He was born in 1961.

(q3, a3) How many people are
there in Honolulu?

It’s 390K.

QA corpora We learn question templates from Yahoo! Answer,
which consists of 41 million QA pairs. The QA corpora is denoted
by QA = {(q1, a1), (q2, a2), ..., (qn, an)}, where qi is a ques-
tion and ai is the reply to qi. Each reply ai consists of several
sentences, and the exact factoid answer is contained in the reply.
Table 3 shows a sample from a QA corpus.

Templates. We derive a template t from a question q by replacing
each entity e with one of e’s categories c. We denote this template
as t = t(q, e, c). A question may contain multiple entities, and
an entity may belong to multiple categories. We obtain concept
distribution of e through context-aware conceptualization [32]. For
example, question q1 in Table 3 contains entity a in Figure 1. Since
a belongs to two categories: $Person, $Politician, we can derive
two templates from the question: When was $Person born?
and When was $Politician born?.

Figure 3: System Overview

System Architecture. Figure 3 shows the pipeline of our QA sys-
tem, which consists of two major procedures:

• Online procedure: When a question comes in, we first parse
and decompose it into a series of binary factoid questions. The
decomposition process is described in Sec 5. For each binary
factoid question, we use a probabilistic inference approach to
find its value, shown in Sec 3. The inference is based on the
predicate distribution of given templates, i.e. P (p|t). Such dis-
tribution is learned offline.

• Offline procedure: The goal of offline procedure is to learn the
mapping from templates to predicates. This is represented by
P (p|t), which is estimated in Sec 4. And we expand predicates
in the knowledge base in Sec 6, so that we can learn more com-
plex predicate forms (e.g., marriage → person → name in
Figure 1).

3. OUR APPROACH: KBQA
In this section, we first formalize our problem in a probabilistic

framework in Sec 3.1. We present the details for most probability
estimations in Sec 3.2, leaving only the estimation of P (p|t) in
Sec 4. We elaborate the online procedure in Sec 3.3.

3.1 Problem Model
KBQA learns question answering by using a QA corpus and a

knowledge base. Due to issues such as uncertainty (e.g. some ques-
tions’ intents are vague), incompleteness (e.g. the knowledge base
is almost always incomplete), and noise (e.g. answers in the QA
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corpus may be wrong), we create a probabilistic model for QA over
a knowledge base below. We highlight the uncertainty from the
question’s intent to the knowledge base’s predicates [18]. For ex-
ample, the question “where was Barack Obama from” is related to
at least two predicates in Freebase: “place of birth” and “place lived
location”. In DBpedia, who founded $organization? re-
lates to predicates founder and father.

PROBLEM DEFINITION 1. Given a question q, our goal is to
find an answer v with maximal probability (v is a simple value):

arg max
v

P (V = v|Q = q) (1)

To illustrate how a value is found for a given question, we
proposed a generative model. Starting from the user question q,
we first generate/identify its entity e according to the distribution
P (e|q). After knowing the question and the entity, we generate the
template t according to the distribution P (t|q, e). The predicate
p only depends on t, which enables us to infer the predicate p by
P (p|t). Finally, given the entity e and the predicate p, we generate
the answer value v by P (v|e, p). v can be directly returned or em-
bedded in a natural language sentence as the answer a. We illustrate
the generation procedure in Example 1, and shows the dependen-
cy of these random variables in Figure 4. Based on the generative
model, we compute P (q, e, t, p, v) in Eq (2). Now Problem 1 is
reduced to Eq (3).

P (q, e, t, p, v) = P (q)P (e|q)P (t|e, q)P (p|t)p(v|e, p) (2)

arg max
v

∑
e,t,p

P (v|q, e, t, p) (3)

Figure 4: Probabilistic Graph
EXAMPLE 1. Consider the generative process of (q3, a3) in Ta-

ble 3. Since the only entity in q3 is “Honolulu”, we generate the
entity node d (in Figure 1) by P (e = d|q = q3) = 1. By conceptu-
alizing “Honolulu” to a city, we generate the template How many
people are there in $city?. Note that the correspond-
ing predicate of the template is always “population”, no matter
which specific city it is. So we generate predicate “population” by
distribution P (p|t). After generating entity “Honolulu” and pred-
icate “population”, the value “390k” can be easily found from the
knowledge base in Figure 1. Finally we use a natural language
sentence a3 as the answer.

Outline of the following subsections Given the above objective
function, our problem is reduced to the estimation of each prob-
ability term in Eq (2). The term P (p|t) is estimated in the offline
procedure in Sec 4. All other probability terms can be directly com-
puted by the off-the-shelf solutions (such as NER, conceptualiza-
tion). We elaborate the calculation of these probabilities in Sec 3.2.
And we elaborate the online procedure in Sec 3.3.

3.2 Probability Computation
In this subsection, we compute each probability term in Eq (2)

except P (p|t).

Entity distribution P (e|q) The distribution represents the enti-
ty identification from the question. We identify entities that meet
both conditions: (a) it is an entity in the question; (b) it is in the
knowledge base. We use Stanford Named Entity Recognizer [13]
for (a). And we then check if it is an entity’s name in the knowledge
base for (b). If there are multiple candidate entities, we simply give
them uniform probability.

We optimize the computation of P (e|q) in the offline procedure
by q’s answer. As illustrated in Sec 4.1, we already extracted a set
of entity-value pairs EVi for question qi and answer ai, where the
values are from the answer. We assume the entities in EVi have
equal probability to be generated. So we obtain:

P (e|qi) =
[∃v, (e, v) ∈ EVi]

|{e′|∃v, (e′, v) ∈ EVi}|
(4)

,where [.] is the Iverson bracket. As shown in Sec 7.5, this approach
is more accurate than directly using the NER approach.

Template distribution P (t|q, e) A template is in the form of
When was $person born?. In other words, it is a question
with the mention of an entity (e.g., “Barack Obama”) replaced by
the category of the entity (e.g., $person).

Let t = t(q, e, c) indicate that template t is obtained by replacing
entity e in q by e’s category c. Thus, we have

P (t|q, e) = P (c|q, e) (5)

, where P (c|q, e) is the category distribution of e in context q. In
our work, we directly apply the conceptualization method in [25]
to compute P (c|q, e).

Value (answer) distribution P (v|e, p) For an entity e and a
predicate p of e, it is easy to find the predicate value v by look-
ing up the knowledge base. For example, in Figure 1, let entity
e = Barack Obama, and predicate p = dob. We easily get Oba-
ma’s birthday, 1961, from the knowledge base. In this case, we
have P (1961|Barack Obama, dob) = 1, since Barack Obama only
has one birthday. Some predicates may have multiple values (e.g.,
the children of Barack Obama). In this case, we assume uniform
probability for all possible values. More formalized, we compute
P (v|e, p) by

P (v|e, p) =
[(e, p, v) ∈ K]

|{(e, p, v′)|(e, p, v′) ∈ K}| (6)

3.3 Online Procedure
In the online procedure, we are given a user question q0. We can

compute p(v|q0) by Eq (7). And we return arg maxv P (v|q0) as
the answer.

P (v|q0) =
∑
e,p,t

P (q0)P (v|e, p)P (p|t)P (t|e, q0)P (e|q0) (7)

, where P (p|t) is derived from offline learning in Sec 4, and other
probability terms are computed in Sec 3.2.

Complexity of Online Procedure: In the online procedure, we
enumerate q0’s entities, templates, predicates, and values in order.
We treat the number of entities per question, the number of con-
cepts per entity, and the number of values per entity-predicate pair
as constants. So the complexity of the online procedure is O(|P |),
which is caused by the enumeration on predicate. Here |P | is the
number of distinct predicates in the knowledge base.

4. PREDICATE INFERENCE
In this section, we present how we infer predicates from tem-

plates, i.e., the estimation of P (p|t). We treat the distribution
P (P |T ) as parameters and then use the maximum likelihood (ML)
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estimator to estimate P (P |T ). To do this, we first formulate the
likelihood of the observed data (i.e., QA pairs in the corpora) in
Sec 4.1. Then we present the parameter estimation and its algorith-
mic implementation in Sec 4.2 and Sec 4.3, respectively.

4.1 Likelihood Formulation
Rather than directly formulating the likelihood to observe the

QA corpora (QA ), we first formulate a simpler case, the likelihood
of a set of question-entity-value triples extracted from the QA pairs.
Then we build the relationship between the two likelihoods. The
indirect formulation is well motivated. An answer inQA is usually
a complicated natural language sentence containing the exact value
and many other tokens. Most of these tokens are meaningless in
indicating the predicate and bring noise to the observation. On the
other hand directly modeling the complete answer in a generative
model is difficult, while modeling the value in a generative model
is much easier.

Next, we first extract entity-value pairs from the given QA pair
in Sec 4.1.1, which allows to formalize the likelihood of question-
entity-value triples (X). We then establish the relationship between
the likelihood of the QA corpora and the likelihood of X , in E-
q (13), Sec 4.1.2.

4.1.1 Entity-Value Extraction
Our principle to extract candidate values from the answer is that

a valid entity&value pair usually has some corresponding relation-
ships in knowledge base. Following this principle, we identify the
candidate entity&value pairs from (qi, ai):

EVi = {(e, v)|e ⊂ qi, v ⊂ ai, ∃p, (e, p, v) ∈ K} (8)

, where⊂ means “is substring of”. We illustrate this in Example 2.

EXAMPLE 2. Consider (q1, a1) in Table 3. Many tokens (e.g.
The, was, in) in the answer are useless. We extract the valid
value 1961, by noticing that the entity Barack Obama in q1 and
1961 are connected by predicate “pob” in Figure 1. Note that we
also extract the noise value politician in this step. We will
show how to filter it in the refinement step below.

Refinement of EVi We need to filter the noisy pairs in EV (q, a),
e.g. (Barack Obama, politician) in Example 2. The intuition is:
the correct value and the question should have the same category.
Here the category of a question means the expected answer type
of the question. This has been studied as the question classifica-
tion problem [22]. We use the UIUC taxonomy [20]. For question
categorization, we use the approach proposed in [22]. For value’s
categorization, we refer to the category of its predicate. The predi-
cates’ categories are manually labeled. This is feasible since there
are only a few thousand predicates.

4.1.2 Likelihood Function
After the entity&value extraction, each QA pair (qi, ai) is trans-

ferred into a question and a set of entity-value pairs, i.e., EVi. By
assuming the independence of these entity-value pairs, the proba-
bility of observing such a QA pair is shown in Eq (9). Thus, we
compute the likelihood of the entire QA corpora in Eq (10).

P (qi, ai) = P (qi, EVi) = P (qi)
∏

(e,v)∈EVi

P (e, v|qi) (9)

LQA =

n∏
i=1

[P (qi)
∏

(e,v)∈EVi

P (e, v|qi)] (10)

By assuming each question has an equal probability to be generat-
ed, i.e. P (qi) = α, we have:

LQA =
n∏
i=1

[P (qi)
1−|EVi|

∏
(e,v)∈EVi

P (e, v|qi)P (qi)]

= β

n∏
i=1

[
∏

(e,v)∈EVi

P (e, v, qi)]

(11)

, where β = αn−
∑n

i=1 |EVi| can be considered as a constant. E-
q (11) implies that LQA is proportional to the likelihood of these
question-entity-value triples. Let X be the set of such triples that
are extracted from QA corpora:

X = {(qi, e, v)|(qi, ai) ∈ QA, (e, v) ∈ EVi} (12)

We denote the i-the term in X as xi = (qi, ei, vi). So
X = {x1, ..., xm}. Thus we establish the linear relationship be-
tween the likelihood ofQA and the likelihood of X .

LQA = βLX = β

m∏
i=1

P (xi) = β

m∏
i=1

P (qi, ei, vi) (13)

Now, maximizing the likelihood of QA is equivalent to maxi-
mize the likelihood of X . Using the generative model in Eq (2),
we calculate P (qi, ei, vi) by marginalizing the joint probability
P (q, e, t, p, v) over all templates t and all predicates p. The likeli-
hood is shown in Eq (14). We illustrate the entire process in Fig-
ure 4.

LX =

m∏
i=1

∑
p∈P,t∈T

P (qi)P (ei|qi)P (t|ei, qi)P (p|t)p(vi|ei, p) (14)

4.2 Parameter Estimation
Goal: In this subsection, we estimate P (p|t) by maximizing E-

q (14). We denote the distribution P (P |T ) as parameter θ and its
corresponding log-likelihood as L(θ). And we denote the proba-
bility P (p|t) as θpt. So we estimate θ by:

θ̂ = arg max
θ

L(θ) (15)

, where

L(θ) =

m∑
i=1

logP (xi) =

m∑
i=1

logP (qi, ei, vi)

=
m∑
i=1

log[
∑

p∈P,t∈T
P (qi)P (ei|qi)P (t|ei, qi)θptP (vi|ei, p)]

(16)

Intuition of EM Estimation: We notice that some random
variables (e.g. predicate and template) are latent in the proposed
probabilistic model, which motivates us to use the Expectation-
Maximization (EM) algorithm to estimate the parameters. The EM
algorithm is a classical approach to find the maximum likelihood
estimates of parameters in a statistical model with unobserved vari-
ables. The ultimate objective is to maximize the likelihood of com-
plete data L(θ). However, it involves a logarithm of a sum and
is computationally hard. Hence, we instead resort to maximizing
one of its lower bound [7], i.e., the Q-function Q(θ; θ(s)). To
define the Q-function, we leverage the likelihood of complete da-
ta Lc(θ). The EM algorithm maximizes L(θ) by maximizing the
lower bound Q(θ; θ(s)) iteratively. In the s-th iteration, E-step
computes Q(θ; θ(s)) for given parameters θ(s), and M-step esti-
mates the parameters θ(s+1) (parameters in the next iteration) that
maximizes the lower bound.
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Likelihood of Complete Data: Directly maximizing L(θ) is
computationally hard, since the function involves a logarithm of a
sum. Intuitively, if we know the complete data of each observed
triple, i.e., which template and predicate it is generated with, the
estimation becomes much easier. We thus introduce a hidden vari-
able zi for each observed triple xi. The value of zi is a pair of
predicate and template, i.e. zi = (p, t), indicating xi is generated
with predicate p and template t. Note that we consider predicate
and template together since they are not independent in the gener-
ation. Hence, P (zi = (p, t)) is the probability that xi is generated
with predicate p and template t.

We denote Z = {z1, ..., zm}. Z and X together form the com-
plete data. The log-likelihood of observing the complete data is:

Lc(θ) = logP (X,Z|θ) =
m∑
i=1

logP (xi, zi|θ) (17)

, where

P (xi, zi = (p, t)|θ) = P (qi, ei, vi, p, t|θ)
= P (qi)P (ei|qi)P (t|ei, qi)θptP (vi|ei, p) = f(xi, zi)θpt

(18)

f(x = (q, e, v), z = (p, t)) = P (q)P (e|q)P (t|e, q)P (v|e, p) (19)

As discussed in Sec 3.2, f() can be computed independently before
the estimation of P (p|t). So we treat it as a known factor.

Q-function: Instead of optimizing L(θ) directly, we define the
“Q-function” in Eq (20), which is the expectation of the complete
observation’s likelihood. Here θ(s) is the estimation of θ at itera-
tion s. According to Theorem 1, when treating h(θ(s)) as a con-
stant, Q(θ; θ(s)) provides a lower bound for L(θ). Thus we try to
improveQ(θ; θ(s)) rather than directly improve L(θ).

Q(θ; θ(s)) = EP (Z|X,θ(s))[Lc(θ)]

=
m∑
i=1

∑
p∈P,t∈T

P (zi = (p, t)|X, θ(s)) logP (xi, zi = (p, t)|θ)
(20)

THEOREM 1 ( LOWER BOUND [10]).
L(θ) ≥ Q(θ; θ(s)) + h(θ(s)) , where h(θ(s)) only relies on
θ(s) and can be treated as constant for L(θ).

In E-step, we compute Q(θ; θ(s)). For each P (zi|X, θs) in E-
q (20), we have:

P (zi = (p, t)|X, θ(s)) = f(xi, zi)θ
(s)
pt (21)

In M-step, we maximize the Q-function. By using Lagrange
multiplier, we obtain θ(s+1)

pt in Eq (22).

θ
(s+1)
pt =

∑m
i=1 P (zi = (p, t)|X, θ(s))∑

p′∈P
∑m
i=1 P (zi = (p′, t)|X, θ(s))

(22)

4.3 Implementation
Now we elaborate the implementation of the EM algorithm (in

Algorithm 1), which consists of three steps: initialization, E-step,
and M-step.

Initialization: To avoid P (zi = (p, t)|X, θ(s)) in Eq (21) being
all zero, we require that θ(0) is uniformly distributed over all pairs
of (xi, zi) s.t. f(xi, zi) > 0. So we have:

θ
(0)
pt =

[∃i, f(xi, zi = (p, t)) > 0]

|{p′|∃i, f(xi, zi = (p′, t)) > 0}| (23)

E-step: We enumerate all zi and compute P (zi|X, θ(s)) by E-
q (21). Its complexity is O(m).

M-step: We compute the
∑m
i=1 P (zi = (p, t)|X, θ(s)) for each

θ
(s+1)
pt . The direct computation costs O(m|P ||T |) time since we

need to enumerate all possible templates and predicates. Next, we
reduce it to O(m) by only enumerating a constant number of tem-
plates and predicates for each i.

We notice that only zi with P (zi = (p, t)|X, θ(s)) > 0 needs to
be considered. Due to Eq (18) and Eq (19), this implies:

f(xi, zi = (p, t)) > 0⇒ P (t|ei, qi) > 0, P (vi|ei, p) > 0 (24)

With P (t|ei, qi) > 0, we pruned the enumeration of templates.
P (t|ei, qi) > 0 implies that we only enumerate the templates
which are derived by conceptualizing ei in qi. The number of con-
cepts for e is obviously upper bounded and can be considered as
a constant. Hence, the total number of templates t enumerated in
Line 7 is O(m). With P (vi|ei, p) > 0, we pruned the enumer-
ation of predicates. P (vi|ei, p) > 0 implies that only predicates
connecting ei and vi in the knowledge base need to be enumerated.
The number of such predicates also can be considered as a constant.
So the complexity of the M-step is O(m).

Algorithm 1: EM Algorithm for Predicate Inference

Data: X;
Result: P (p|t);

1 Initialize the iteration counter s← 0;
2 Initialize the parameter θ(0);
3 while θ not converged do

//E-step ;
4 for i = 1...m do
5 Estimate P (zi|X, θ(s)) by Eq (21) ;

//M-step ;
6 for i = 1...m do
7 for all t ∈ T for qi, ei with P (t|qi, ei) > 0 do
8 for all p ∈ P with P (vi|ei, p) > 0 do
9 θ

(s+1)
pt + = P (zi = (p, t)|X, θ(s)) ;

10 Normalize θ(s+1)
pt as in Eq (22) ;

11 s+ = 1 ;

12 return P (p|t)

Overall Complexity of EM algorithm: Suppose we repeat the
EM algorithm k times, the overall complexity thus is O(km).

5. ANSWERING COMPLEX QUESTIONS
In this section, we elaborate how we answer complex questions.

We first formalize the problem as an optimization problem in Sec
5.1. Then, we elaborate the optimization metric and our algorithm
in Sec 5.2 and Sec 5.3, respectively.

5.1 Problem Statement
We focus on the complex questions which are composed of a

sequence of BFQs. For example, question f© in Table 1 can be
decomposed into two BFQs: (1) Barack Obama’s wife (Michelle
Obama); (2) When was Michelle Obama born? (1964). Clearly,
the answering of the second question relies on the answer of the
first question.

A divide-and-conquer framework can be naturally leveraged
to answer complex questions: (1) we first decompose the question
into a sequence of BFQs, (2) then we answer each BFQ sequen-
tially. Since we have shown how to answer BFQ in Sec 3, the key
issue in this section is the decomposition.
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We highlight that in the decomposed question sequence, each
question except the first one is a question string with an entity vari-
able. The question sequence can only be materialized after the vari-
able is assigned with a specific entity, which is the answer of the im-
mediately previous question. Continue the example above, the sec-
ond question When was Michelle Obama born? is When
was $e born? in the question sequence. $e here is the variable
representing the answer of the first question Barack Obama’s
wife. Hence, given a complex question q, we need to decompose
it into a sequence of k questions A = (q̌i)

k
i=0 such that:

• Each q̌i (i > 0) is a BFQ with entity variable ei, whose value is
the answer of q̌i−1.

• q̌0 is a BFQ that its entity is equal to the entity of q.

EXAMPLE 3 (QUESTION SEQUENCE). Consider the ques-
tion f© in Table 1. One natural question sequence is q̌0= Barack
Obama’s wife and q̌1 = When was $e1 born?. We can
also substitute an arbitrary substring to construct the question se-
quence, such as q̌′0 =was Barack Obama’s wife born and
q̌′1=When $e?. However, the later question sequence is invalid s-
ince q̌′0 is neither an answerable question nor a BFQ.

Given a complex question, we construct a question sequence in
a recursive way. We first replace a substring with an entity vari-
able. If the substring is a BFQ that can be directly answered, it is
q0. Otherwise, we continue the above procedure on the substring
until we meet a BFQ or the substring is a single word. However, as
shown in Example 3, many question decompositions are not valid
(answerable). Hence, we need to measure how likely a decomposi-
tion sequence is answerable. More formally, let A(q) be the set of
all possible decompositions of q. For a decomposition A ∈ A(q),
let P (A) be the probability that A is a valid (answerable) question
sequence. Out problem thus is reduced to

arg max
A∈A(q)

P (A) (25)

Next, we elaborate the estimation of P (A) and how we solve the
optimization problem efficiently in Sec 5.2 and 5.3, respectively.

5.2 Metric
The basic intuition is that A = (q̌i)

k
i=0 is a valid question se-

quence if each individual question q̌i is valid. Hence, we first es-
timate P (q̌i) (the probability that qi is a valid question), and then
aggregate each P (q̌i) to compute P (A).

We use QA corpora to estimate P (q̌i). q̌ is a BFQ with entity
variable $e. A question q matches q̌, if we can get q̌ by replacing
a substring of q with $e. We say the match is valid, if the replaced
substring is a mention of the entity in q. For example, When was
Michelle Obama born? matches When was $e born? and When
was $e?. However, only the former one is valid since only Michelle
Obama is an entity. We denote the number of all questions in the
QA corpora that matches q̌ as fo(q̌), and the number of questions
that validly matches q̌ as fv(q̌). Both fv(q̌i) and fo(q̌i) are counted
by the QA corpora. We estimate P (q̌i) by:

P (q̌i) =
fv(q̌i)

fo(q̌i)
(26)

The rationality is clear: the more valid match the more likely q̌i is
answerable. fo(q̌i) is used to punish the over-generalized question
pattern. We show an example of P (q̌i) below.

EXAMPLE 4. Suppose q̌1 = When was $e born?, q̌2 =
When $e?, the QA corpora is shown in Table 3. Clearly, q1 sat-
isfies the patterns of q̌1 and q̌2. However, only q̌1 is a valid pat-
tern for q1 since when matching q1 to q̌1, the replaced substring
corresponds to a valid entity “Barack Obama”. Thus we have
fv(q̌1) = fo(q̌1) = fo(q̌2) = 2. However, fv(q̌0) = 0. Due
to Eq (26), P (q̌1) = 1, P (q̌2) = 0.

Given each P (q̌i), we define P (A). We assume that each q̌i in
A being valid are independent. A question sequence A is valid if
and only if all q̌i in it are valid. So we compute P (A) by:

P (A) =
∏
q̌∈A

P (q̌) (27)

5.3 Algorithm
Given P (A), our goal is to find the question sequence maxi-

mizing P (A). This is not trivial due to the huge search space.
Consider a complex question q of length |q|, i.e., the number of
words in q. There are overall O(|q|2) substrings of q. If q finally
is decomposed into k sub-questions, the entire search space will
be O(|q|2k), which is unacceptable. In this paper, we proposed
a dynamic programming based solution to solve our optimization
problem, with complexity O(|q|4). Our solution is developed up-
on the local optimality property of the optimization problem. We
establish this property in Theorem 2.

THEOREM 2 (LOCAL OPTIMALITY). Given a complex ques-
tion q, let A∗(q) = (q̌∗0 , ..., q̌

∗
k) be the optimal decomposition of q,

then ∀1 ≤ i ≤ k, ∃qi ⊂ q, A∗(qi) = (q̌∗0 , .., q̌
∗
i ) is the optimal

decomposition of qi.

Theorem 2 suggests a dynamic programming (DP) algorithm.
Consider a substring qi of q, qi is either (1) a primitive BFQ (non-
decomposable) or (2) a string that can be further decomposed. For
case (1), A∗(qi) contains a single element, i.e., qi itself. For case
(2),A∗(qi) = A∗(qj)⊕r(qi, qj), where qj ⊂ qi is the one with the
maximal P (r(qi, qj))P (A∗(qj)), ⊕ is the operation that appends
a question at the end of a question sequence, and r(qi, qj) is the
question generated by replacing qj in qi with a placeholder “$e”.
Thus, we derive the dynamic programming equation:

P (A∗(qi)) = max{δ(qi), max
qj⊂qi

{P (r(qi, qj))P (A∗(qj))}} (28)

where δ(qi) is the indicator function to determine whether q1 is a
primitive BFQ. That is δ(qi) = 1 when qi is a primitive BFQ, or
δ(qi) = 0 otherwise.

Algorithm 2 outlines our dynamic programming algorithm. We
enumerate all substrings of q in the outer loop (Line 1). Within
each loop, we first initialize A∗(qi) and P (A∗(qi)) (Line 2-4). In
the inner loop, we enumerate all substrings qj of qi (Line 5), and
updateA∗(qi) and P (A∗(qi)) (Line 7-9). Note that we enumerate
all qis in the ascending order of their lengths, which ensures that
P (A∗()) and A∗() are known for each enumerated qj .

The complexity of Algorithm 2 isO(|q|4), since both loops enu-
merates O(|q|2) substrings. In our QA corpora, over 99% ques-
tions contain less than 23 words (|q| < 23). So this complexity is
acceptable.

6. PREDICATE EXPANSION
In a knowledge base, many facts are not expressed by a direct

predicate, but by a path consisting of multiple predicates. As shown
in Figure 1, “spouse of” relationship is represented by three pred-
icates marriage → person → name. We denote these multi-
predicate paths as expanded predicates. Answering questions over
expanded predicates highly improves the coverage of KBQA.
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Algorithm 2: Complex Question Decomposition

Data: q;
Result: A∗(q);

1 for each substring qi of q, with length |qi| from 1..|q| do
2 P (A∗(qi))← δ(qi) ;
3 if δ(qi) = 1 then
4 A∗(qi)← {qi};
5 for each substring qj of qi do
6 r(qi, qj)← Replace qj in qi with “$e” ;
7 if P (A∗(qi)) < P (r(qi, qj))P (A∗(qj)) then
8 A∗(qi)← A∗(qj)⊕ r(qi, qj) ;
9 P (A∗(qi))← P (r(qi, qj))P (A∗(qj)) ;

10 returnA∗(q)

DEFINITION 1 (EXPANDED PREDICATE). An expanded
predicate p+ is a predicate sequence p+ = (p1, ..., pk). We refer
to k as the length of the p+. We say p+ connects subject s and
object o, if there exists a sequence of subjects s = (s1, s2, ..., sk)
such that ∀1 ≤ i < k, (si, pi, si+1) ∈ K and (sk, pk, o) ∈ K.
Similar to (s, p, o) ∈ K representing p connects s and o, we denote
p+ connecting s and o as (s, p+, o) ∈ K.

The KBQA model proposed in Section 3 in general is flexible
for expanded predicates. We only need some slight changes for the
adaptation. In Sec 6.1, we show such adaptation. Then we show
how to scale expanded predicates for billion scale knowledge bases
in Sec 6.2. Finally, we show how to select a reasonable predicate
length to pursue highest effectiveness in Sec 6.3.

6.1 KBQA for Expanded Predicates
Recall that the framework of KBQA for single predicate consists

of two major parts. In the offline part, we compute P (p|t), the
predicate distribution for given templates; in the online part, we
extract the question’s template t, and compute the predicate through
P (p|t). When changing p to p+, we do the following adjustments:

In the offline part, we learn question templates for expanded
predicates, i.e., computing P (p+|t). The computation of P (p+|t)
only relies on knowing whether (e, p+, v) is in K. We can com-
pute this cardinality if we generate all (e, p+, v) ∈ K. We show
this generation process in Sec 6.2

In the online part, we use expanded predicates to answer ques-
tion. To compute P (v|e, p+), we can compute it by exploring the
RDF knowledge base starting from e and going through p+. For
example, let p+ = marriage → person → name, to compute
P (v|Barack Obama, p+) from the knowledge base in Figure 1,
we start the traverse from node a, then go through b, c. Finally we
have P (Michelle Obama|Barack Obama, p+) = 1.

6.2 Generation of Expanded Predicates
A naive approach to generate all expanded predicates is breadth-

first search (BFS) starting from each node in the knowledge base.
However, the number of expanded predicates grows exponentially
with the predicates’ length. So the cost is unacceptable for a billion
scale knowledge base. To do this, we first set a limit on the pred-
icate length k to improve the scalability. That is we only search
expanded predicate with length no larger than k. In the next sub-
section, we will show how to set a reasonable k. In this subsection,
we improve the scalability from another two aspects: (1) reduction
on s; (2) memory-efficient BFS.

Reduction on s: During the offline inference process, we are
only interested in s which occurred in at least one question in the

QA corpus. Hence, we only use subjects occurring in the ques-
tions from QA corpus as starting nodes for the BFS exploration.
This strategy significantly reduces the number of (s, p+, o) triples
to be generated. Because the number of such entities is far less
than the number of those in a billion-scale knowledge base. For
the knowledge base (1.5 billion entities) and QA corpus (0.79 mil-
lion distinct entities) we use, this filtering reduces the number of
(s, p+, o) triples 1500/0.79 = 1899 times theoretically.

Memory-Efficient BFS: To enable the BFS on a knowledge base
of 1.1TB, we use a disk based multi-source BFS algorithm. At
the very beginning, we load all entities occurring in QA corpus
(denoted by S0) into memory and build the hash index on S0. In
the first round, by scanning all RDF triples resident on disk once
and joining the subjects of triples with S0, we get all (s, p+, o)
with length 1. The hash index built upon S0 allows a linear time
joining. In the second round, we load all the triples found so far
into memory and build hash index on all objects o (denoted by S1).
Then we scan the RDF again and join the subject of RDF tripes with
s ∈ S1. Now we get all (s, p+, o) with length 2, and load them into
memory. We repeat the above index+scan+join operation k times
to get all (s, p+, o) with p+.length ≤ k.

The algorithm is efficient since our time cost is mainly spent on
scanning the knowledge base k times. The index building and join
are executed in memory, and the time cost is negligible compared
to the disk I/O. Note that the number of expanded predicate starting
from S0 is always significantly smaller than the size of knowledge
base, thus can be hold in memory. For the knowledge base (KBA,
please refer to experiment section for more details) and QA corpus
we use, we only need to store 21M (s, p+, o) triples. So it’s easy
to load them into memory. Suppose the size of K is |K|, and the
number of (s, p+, o) triples found is #spo. It consumes O(#spo)
memory, and the time complexity is O(|K|+ #spo).

6.3 Selection of k
The length limit k of expanded predicate affects the effective-

ness of predicate expansion. A larger k leads to more (s, p+, o)
triples, and consequently higher coverage of questions. However,
it also introduces more meaningless (s, p+, o) triples. For example,
the expanded predicate marriage → person → dob in Figure 1
connects “Barack Obama” and “1964”. But they have no obvious
relations and are useless for KBQA.

The predicate expansion should select a k that allows most mean-
ingful relations and avoids most meaningless relations. We esti-
mate the best k using Infobox in Wikipedia. Infobox stores facts
about entities and most entries in Infobox are subject-predicate-
object triples. Facts in Infobox can be used as meaningful relations.
Hence, our idea is sampling (s, p+, o) triples with length k and see
how many of them have correspondence in Infobox. We expect to
see a significant drop for an excessive k.

Specifically, we select top 17,000 entities from the RDF knowl-
edge base K ordered by their frequencies. The frequency of an
entity e is defined as the number of (s, p, o) triples in K so that
e = s. We choose these entities because they have richer facts,
and therefore are more trustworthy. For these entities, we generate
their (s, p+, o) triples at length k using the BFS procedure pro-
posed in Sec 6.2. Then, for each k, we count the number of these
(s, p+, o) that can find its corresponding SPO triples in Wikipedia
Infobox. More formally, letE be the sampled entity set, and SPOk
be (s, P+, o) ∈ K with length k. We define valid(k) to measure
the influence of k in finding meaningful relations as follows:

valid(k) =
∑
s∈E
|{(s, p+

, o)|(s, p+
, o) ∈ SPOk,

∃p, (s, p, o) ∈ Infobox}|
(29)
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The results of valid(k) over KBA and DBpedia are shown in Ta-
ble 4. Note that for expanded predicates with length ≥ 2, we only
consider those which end with name. This is because we found
entities and values connected by other expanded predicates always
have some very weak relations and should be discarded. The num-
ber of valid expanded predicates significantly drops when k = 3.
This suggests that most meaningful facts are represented within this
length. So we choose k = 3 in this paper.

Table 4: valid(k)
k 1 2 3

KBA 14005 16028 2438
DBpedia 352811 496964 2364

7. EXPERIMENTS
In this section, we first elaborate the experimental setup in

Sec 7.1, and verify the rationality of our probabilistic framework in
Sec 7.2. We evaluate the effectiveness and efficiency of our system
in Sec 7.3 and Sec 7.4, respectively. In Sec 7.5, we also investigate
the effectiveness of three detailed components of KBQA.

7.1 Experimental Setup
We ran KBQA on a computer with Intel Xeon CPU, 2.67 GHz, 2

processors, 24 cores, 96 GB memory, 64 bit windows server 2008
R2. We use Trinity.RDF [35] as the RDF engine.

Knowledge base. We use three open domain RDF knowledge
bases. The business privacy rule prohibits us from publishing the
name of the first knowledge base. We refer to it as KBA. KBA
contains 1.5 billion entities and 11.5 billion SPO triples, occupying
1.1 TB storage space. The SPO triples cover 2658 distinct predi-
cates and 1003 different categories. For the sake of reproducibility,
we also evaluated our system on two well-known public knowledge
bases Freebase and DBpedia. Freebase contains 116 million enti-
ties and 2.9 billion SPO triples, occupying 380 GB storage. DBpe-
dia contains 5.6 million entities, 111 million SPO triples, occupy-
ing 14.2 GB storage.

QA corpus. The QA corpus contains 41 million QA pairs
crawled from Yahoo! Answer. If there are multiple answers for
a certain question, we only consider the “best answer”.

Test data. We evaluated KBQA over WebQuestions [2], QALD-
5 [31], QALD-3 [27] and QALD-1 [30], which are designed for QA
systems over knowledge bases. We present the basic information of
these data sets in Table 5. We are especially interested in the num-
ber of questions which can be decomposed into BFQs (#BFQ)
since KBQA focuses on answering BFQs.

Table 5: Benchmarks for evaluation.
#total #BFQ ratio #total #BFQ ratio

WebQuestions 2032 - - QALD-3 99 41 0.41
QALD-5 50 12 0.24 QALD-1 50 27 0.54

7.2 Rationality of Probabilistic Framework
We explain why a probabilistic framework is necessary. In

each step of the question understanding, there are different choices
which bring uncertainty to our decision. We show the number of
candidate choices in each step over KBA in Table 6. Such uncer-
tainty suggests a probabilistic framework.

Table 6: Statistics for average choices of each random variable.
Probability Explanation Avg. Count
P (e|q) #entity for a question 18.7
P (t|e, q) #templates for a entity-question pair 2.3
P (p|t) #predicates for a template 119.0
P (v|e, p) #values for a entity-predicate pair 3.69

As an example, P (t|e, q) is used to represent the uncertainty
when translating a question and its entity into a template. For the

question How long is Mississippi River?, after iden-
tifying Mississippi River, we still cannot decide the unique
category from many candidates, such as RIVER, LOCATION.

7.3 Effectiveness
To evaluate the effectiveness of KBQA, we conduct the follow-

ing experiments. For the online part, we evaluate the precision and
recall of question answering. For the offline part, we evaluate the
coverage and precision of predicate inference.

7.3.1 Effectiveness of Question Answering
Metric for QALD A QA system may return null when it be-

lieves that there is no answer. So we are interested in the number of
questions a QA system processed and returned a non-null answer
(not necessarily true) (#pro), and the number of questions whose
answers are right (#ri). However, in reality, the system can on-
ly partially correctly answer a question (for example, only finding
a part of the correct answers). Hence we also report the number
of questions whose answers are partially right (#par). Next we
define these metrics for KBQA. Once a predicate is found, the an-
swer can be trivially found from RDF knowledge base. Hence,
for KBQA, #pro is the number of questions that KBQA finds a
predicate. #ri is the number of questions for which KBQA finds
right predicates. #par is the number of questions for which K-
BQA finds partially right predicates. For example, “place of birth”
is a partially correct predicate for Which city was $person
born?, as it may refer to a country or a village instead of a city.

Now we are ready to define our metrics: precision P , partial
precision P ∗, recall R and partial recall R∗ as follows:

P =
#ri

#pro
;P
∗
=

#ri + #par

#pro
;R =

#ri

#total
;R
∗
=

#ri + #par

#total

We are also interested in the recall and partial recall with respect
to the number of BFQs, denoted by RBFQ and R∗BFQ:

RBFQ =
#ri

#BFQ
;R
∗
BFQ =

#ri + #par

#BFQ

Results on QALD-5 and QALD-3 We give the results in Table 7
and Table 8. For all the competitors, we directly report their result-
s in their papers. We found that on all knowledge bases, KBQA
beats all other competitors except squall2sparql in terms of preci-
sion. This is because squall2sparql employs humans to identify the
entity and predicate for each question. We also found that KBQA
performs the best over DBpedia than other knowledge bases. This
is because the QALD benchmark is mainly designed for DBpedia.
For most questions in QALD that KBQA can process KBQA can
find the right answers from DBpedia.

Table 7: Results on QALD-5.
#pro #ri #par R R∗ P P∗

Xser 42 26 7 0.52 0.66 0.62 0.79
APEQ 26 8 5 0.16 0.26 0.31 0.50
QAnswer 37 9 4 0.18 0.26 0.24 0.35
SemGraphQA 31 7 3 0.14 0.20 0.23 0.32
YodaQA 33 8 2 0.16 0.20 0.24 0.30

R RBFQ R∗ R∗BFQ
KBQA+KBA 7 5 1 0.10 0.42 0.12 0.50 0.71 0.86
KBQA+Freebase 6 5 1 0.10 0.42 0.12 0.50 0.83 1.00
KBQA+DBpedia 8 8 0 0.16 0.67 0.16 0.67 1.00 1.00

Recall Analysis The results in Table 7 and Table 8 imply that K-
BQA has a relatively low recall. The major reason is, KBQA only
answer BFQs (binary factoid questions), while the QALD bench-
marks contain many non-BFQs. If we only consider BFQs, the
recalls increases to 0.67, and 0.61, respectively (over DBpedia).
Furthermore, we studied the cases when KBQA failed to answer a
BFQ on QALD-3. Many cases fail because KBQA uses a relatively
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Table 8: Results on QALD-3.
#pro #ri #par R RBFQ R∗ R∗BFQ P PBFQ P∗ P∗BFQ

squall2sparql 96 80 13 .78 .81 .91 .94 .84 .95 .97 .95
SWIP 21 14 2 .14 .24 .16 .24 .67 .77 .76 .77
CASIA 52 29 8 .29 .56 .37 .61 .56 .79 .71 .86
RTV 55 30 4 .30 .56 .34 .56 .55 .72 .62 .72
gAnswer [38] 76 32 11 .32 .54 .43 - .42 .54 .57 -
Intui2 99 28 4 .28 .54 .32 .56 .28 .54 .32 .56
Scalewelis 70 32 1 .32 .41 .33 .41 .46 .50 .47 .5
KBQA+KBA 25 17 2 .17 .42 .19 .46 .68 .68 .76 .76
KBQA+FB 21 15 3 .15 .37 .18 .44 .71 .71 .86 .86
KBQA+DBp 26 25 0 .25 .61 .25 .61 .96 .96 .96 .96

strict rule for template matching. The failure case usually happens
when a rare predicate is matched against a rare question template.
12 out of 15 questions fail due to this reason. One question example
is In which military conflicts did Lawrence of
Arabia participate, whose predicate in DBpedia is battle.
KBQA lacks training corpora to understand these rare predicates.

Results on QALD-1 We compared with DEANNA over BFQs
in QALD-1 in Table 9. DEANNA is a state-of-the-art synonym
based approach, which also focuses on BFQs. For DEANNA,
#pro is the number of questions that are transformed into SPAR-
QL queries. The results show that the precision of KBQA is signif-
icantly higher than that of DEANNA. Since DEANNA is a typical
synonym based approach, this verifies that template based approach
is superior to the synonym based approach in terms of precision.

Table 9: Results on QALD-1.
#pro #ri #par RBFQ R∗BFQ P P∗

DEANNA 20 10 0 0.37 0.37 0.5 0.5
KBQA + KBA 13 12 0 0.48 0.48 0.92 0.92
KBQA + Freebase 14 13 0 0.52 0.52 0.93 0.92
KBQA + DBpedia 20 18 1 0.67 0.70 0.90 0.95

Results on WEBQUESTIONS We show the results of KBQA
on “WebQuestions” in Table 10. We compared KBQA with some
state-of-the-art systems by precision@1 (p@1), precision (P), re-
call (R), and F1 score as computed by the official evaluation script.
The “WebQuestions” data set still has many non-BFQs. The result-
s again show that KBQA is excellent at BFQ (the high precision
for BFQs). The lower F1 score is caused by the recall, that KBQA
cannot answer non-BFQs.

Table 10: Results on the WEBQUESTIONS test set.
system P P@1 R F1
(Bordes et al., 2014) [4] - 0.40 - 0.39
(Zheng et al., 2015) [37] 0.38 - - -
(Li et al., 2015) [11] - 0.45 - 0.41
(Yao, 2015) [34] 0.53 - 0.55 0.44
KBQA 0.85 0.52 0.22 0.34

Results for hybrid systems Even for a dataset that the BFQ is
not a majority (e.g. WEBQUESTIONS, QALD-3), KBQA con-
tributes by being an excellent component for hybrid QA systems.
We build the hybrid system by: first, the user question is first fed
into KBQA. If KBQA gives no reply, which means the question
is very likely to be a non-BFQ, we fed the question into the base-
line system. We show the improvements of the hybrid system in
Table 11. The performances of all baseline systems significantly
improve when working with KBQA. The results verify the effec-
tiveness of KBQA for a dataset that the BFQ is not a majority.

7.3.2 Effectiveness of Predicate Inference
Next we justify the effectiveness of KBQA in predicate inference

by showing that (1) KBQA learns rich templates and predicates for
natural language questions (coverage), and (2) KBQA infers the
correct predicate for most templates (precision).

Coverage We show the number of predicates and templates K-
BQA learns in Table 12, with comparison to bootstrapping [33,

Table 11: Results of hybrid systems on QALD-3 over DBpedia.
System R R* P P*
SWIP 0.15 0.17 0.71 0.81
KBQA+SWIP 0.33(+0.18) 0.35(+0.18) 0.87(+0.16) 0.92(+0.11)
CASIA 0.29 0.37 0.56 0.71
KBQA+CASIA 0.38(+0.09) 0.44(+0.07) 0.66(+0.10) 0.76(+0.05)
RTV 0.3 0.34 0.34 0.62
KBQA+RTV 0.39(+0.09) 0.42(+0.08) 0.66(+0.32) 0.71(+0.09)
gAnswer 0.32 0.43 0.42 0.57
KBQA+gAnswer 0.39(+0.07) - - -
Intui2 0.28 0.32 0.28 0.32
KBQA+Intui2 0.39(+0.11) 0.41(+0.09) 0.39(+0.11) 0.41(+0.09)
Scalewelis 0.32 0.33 0.46 0.47
KBQA+Scalewelis 0.44(+0.12) 0.45(+0.12) 0.60(+0.14) 0.62(+0.15)

28], which is a state-of-the-art synonym based approach. Boot-
strapping learns synonyms (BOA patterns, which mainly contains
text between subjects and objects in web docs) for predicates from
knowledge base and web docs. The BOA patterns can be seen as
templates, and the relations can be seen as predicates.

Table 12: Coverage of Predicate Inference
KBQA KBQA KBQA Bootstrapping
+KBA +Freebase +DBpedia

Corpus 41M QA 41M QA 41M QA 256M sentences
Templates 27126355 1171303 862758 471920
Predicates 2782 4690 1434 283
Templates per predicate 9751 250 602 4639

The results show that KBQA finds significantly more templates
and predicates than its competitors despite that bootstrapping uses
larger corpus. This implies that KBQA is more effective in pred-
icate inference: (1) the large number of templates ensures that K-
BQA understands diverse question templates; (2) the large number
of predicates ensures that KBQA understands diverse relations. S-
ince KBA is the largest knowledge base we use, and KBQA over
KBA generates the most templates, we focus on evaluating KBA in
the following experiments.

Precision Our goal is to evaluate whether KBQA generates a
correct predicate for a given template. For this purpose, we select
the top 100 templates ordered by their frequencies. We also ran-
domly select 100 templates with frequency larger than 1 (templates
only occur once usually have very vague meanings). For each tem-
plate t, we manually check whether the predicate p with maximum
P (p|t) is correct. Similar to the evaluation on QALD-3, in some
cases the predicate is partially right. The results are shown in Ta-
ble 13. On both template sets, KBQA achieves high precision. The
precision of the top 100 templates even reaches 100%. This justi-
fies the quality of the inference from templates to predicates.

Table 13: Precision of Predicate Inference
Templates #right #partially P P∗

Random 100 67 19 67% 86%
Top 100 100 0 100% 100%

7.4 Efficiency
We first give the running time. The we present the time com-

plexity analysis for KBQA.
Running Time Experiments There two parts of the running

time: offline and online. The offline procedure, which mainly
learns templates, takes 1438 min. The time cost is mainly caused
by the large scale of data: billions of facts in knowledge base and
millions of QA pairs. Since the offline procedure only runs once,
the time cost is acceptable. The online part is responsible for ques-
tion answering. We present the online time cost of our solution in
Table 14 with the comparison to gAnswer and DEANNA. KBQA
takes 79ms, which is 13 times faster than gAnswer, and 98 times
faster than DEANNA. This implies that KBQA efficiently supports
real-time QA, which is expected in real applications.
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Table 14: Time cost
Time Time Complexity

Question Understanding Question Evaluation
DEANNA 7738ms NP-hard NP-hard
gAnswer 990ms O(|V |3) NP-hard

Question Parsing Probabilistic Inference
KBQA 79ms O(|q|4) O(|P |)

Complexity Analysis. We also investigate their time complexity
in Table 14, where |q| is the question length, and |V | in gAnswer
is the number of vertices in RDF graph. As can be seen, all pro-
cedures of KBQA have polynomial time complexity, while both
gAnswer and DEANNA suffer from some NP-hard procedures.
The complexity of question understanding for gAnswer isO(|V |3).
Such complexity is unacceptable on a billion scale knowledge base.
In contrast, the complexity of KBQA isO(|q|4) andO(|P |) (|P | is
the number of distinct predicates), which is independent of the size
of the knowledge base. As shown in Sec 5.3, over 99% questions’
length is less than 23. Hence, KBQA has a significant advantage
over its competitors in terms of time complexity.

7.5 Detailed Components
We investigate the effectiveness of the three specific components

in KBQA: entity&value identification (in Sec 4.1), complex ques-
tion answering (in Sec 5), and predicate expansion (in Sec 6).

Precision of Entity&Value Identification Note that most previ-
ous studies focused solely on entity extraction and cannot be used
to extract entity and value simultaneously. Hence, we can only
compare to a state-of-the-art solution for entity identification, S-
tanford Named Entity Recognizer [13]. We randomly select 50 QA
pairs whose answers are covered by the knowledge base. We man-
ually check whether the extracted entity is correct. Our approach
correctly identifies entities for 36 QA pairs (72%), which is superi-
or to Stanford NER that identifies entities correctly for only 15 QA
pairs (30%). This result suggests that joint extraction of entities is
better than the independent extraction.

Effectiveness to Answer Complex Questions Since no bench-
mark is available for complex question answering, we constructed
8 such questions as shown in Table 15. All these questions are typ-
ical complex questions posed by real users. We compare KBQA
with two state-of-the-art QA engines: Wolfram Alpha and gAn-
swer. Table 15 shows the result. We found that KBQA beats the
strong competitors in answering complex questions. This implies
that KBQA is effective in answering complex questions.

Table 15: Complex Question Answering. WA stands for Wolfram Al-
pha, and gA stands for gAnswer.

Question KBQA WA gA
How many people live in the capital of Japan? Y Y N
When was Barack Obama’s wife born? Y Y N
What are books written by author of Harry Potter? Y N N
What is the area of the capital of Britain? Y N N
How large is the capital of Germany? Y N N
What instrument do members of Coldplay play? Y N N
What is the birthday of the CEO of Google? Y N N
In which country is the headquarter of Google located? Y N N

Effectiveness of Predicate Expansion Next we show that our
predicate expansion procedure is effective in two aspects. First,
the expansion can find significantly more predicates. Second, the
expanded predicates enable KBQA to learn more templates. We
present the evaluation results in Table 16. We found that (1) the
expansion (with length varying from 2 to k) generates ten times the
number of direct predicates (with length 1), and (2) with the ex-
panded predicates, the number of templates increases by 57 times.

We further use two case studies to show (1) the expanded pred-
icates are meaningful and (2) the expanded predicates are correct.

We list 5 expanded predicates we learned in Table 18. We found
that all these expanded predicates found by KBQA are meaningful.
We further choose one expanded predicate, marriage → person
→ name, to see whether the templates learned for this predicate
are correct or meaningful. We list five learned templates in Ta-
ble 17. These templates in general are reasonable.

Table 16: Effectiveness of Predi-
cate Expansion

Length #Template #Predicate
1 467,393 246
2 to k 26,658,962 2536
Ratio 57.0 10.3

Table 17: Templates for
marriage→ person→ name

Who is $person marry to?
Who is $person’s husband?
What is $person’s wife’s name?
Who is the husband of $person?
Who is marry to $person?

Table 18: Examples of Expanded Predicates
Expanded predicate Semantic
marriage→ person→ name spouse
organization_members→ member→ alias organization’s member
nutrition_fact→ nutrient→ alias nutritional value
group_member→ member→ name group’s member
songs→ musical_game_song→ name songs of a game

8. RELATED WORKS
Natural Language Documents vs Knowledge Base QA is very

dependent on the quality of corpora. Traditional QA systems use
web docs or Wikipedia as the corpora to answer questions. State-
of-the-art methods in this category [24, 19, 9, 15] usually take the
sentences from the web doc or Wiki as candidate answers, and rank
them based on the relatedness of words between questions and can-
didate answers. They also tend to use noise reduction methods such
as question classification [22, 36] to increase the answer’s quality.
In recent years, the emergence of many large scale knowledge base,
such as Google Knowledge Graph, Freebase [3], and YAGO2[16],
provide a new opportunity to build a better QA system [23, 29, 28,
14, 33, 12]. The knowledge base in general has a more structured
organization and contains more clear and reliable answers com-
pared to the free text based QA system.

QA Systems Running on Knowledge Base The core process of
QA systems built upon knowledge base is the predicate identifica-
tion for questions. For example, the question can be answered if
we can find the predicate “population” from question How many
people are there in Honolulu. The development of
these knowledge bases experienced three major stages: rule based,
keyword based, and synonym based according to predicate identi-
fication approach. Rule based approaches map questions to predi-
cates using manually constructed rules. For example, Ou et al. [23]
think the question in the form of What is the <xxx> of
entity? should be mapped to the predicate <xxx>. Manually
constructed rules always have high precision but low recall. Key-
word based methods [29] use keywords or phrases in the questions
as features to find the mappings between questions and predicates.
But in general, it is difficult to use keywords to find mappings
between questions and complicated predicates. For example, it
is hard to map question how many people are there in
...? to the predicate “population” based on keywords such as
“how many”, “people”, “are there”, etc. Synonym based approach-
es [28, 33] extend keyword based methods by taking synonyms
of the predicates into consideration. This enables to answer more
questions. The key factor of the approach is the quality of syn-
onyms. Unger et al. [28] uses the bootstrapping [14] from web
docs to generate synonyms. Yahya et al. [33] generates synonyms
from Wikipedia. However, synonym based approaches still cannot
answer complicated questions due to the same reason as the key
word based approach. True knowledge [26] uses key words/phras-
es to represent a template. In contrast, our template is a question
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with its entity replaced by its concept. We think True knowledge
should be categorized as a synonym-based approach. To pursue a
high precision, the CANaLI system [21] guided users to ask ques-
tions with given patterns. However, it only answers questions with
pre-defined patterns.

In general, previous QA systems over knowledge base still have
certain weakness in precision or recall, since they cannot under-
stand the complete question.

9. CONCLUSION
QA over knowledge bases now becomes an important and fea-

sible task. In this paper, we build a question answering system
KBQA over a very large open domain RDF knowledge base. Our
QA system distinguishes itself from previous systems in four as-
pects: (1) understanding questions with templates, (2) using tem-
plate extraction to learn the mapping from templates and predicates,
(3) using expanded predicates in RDF to expand the coverage of
knowledge base, (4) understanding complex questions to expand
the coverage of the questions. The experiments show that KBQA
is effective and efficient, and beats state-of-the-art competitors, es-
pecially in terms of precision.
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