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ABSTRACT
Community search is important in social network analysis. For a
given vertex in a graph, the goal is to find the best community the
vertex belongs to. Intuitively, the best community for a given vertex
should be in the vicinity of the vertex. However, existing solutions
use global search to find the best community. These algorithms, al-
though straight-forward, are very costly, as all vertices in the graph
may need to be visited. In this paper, we propose a local search
strategy, which searches in the neighborhood of a vertex to find the
best community for the vertex. We show that, because the mini-
mum degree measure used to evaluate the goodness of a commu-
nity is not monotonic, designing efficient local search solutions is a
very challenging task. We present theories and algorithms of local
search to address this challenge. The efficiency of our local search
strategy is verified by extensive experiments on both synthetic net-
works and a variety of real networks with millions of nodes.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—Data min-
ing
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1. INTRODUCTION
Most real-life complex networks, including the Internet, social

networks, and biological neural networks, contain community struc-
tures. That is, the networks can be partitioned into groups within
which connections are dense and between which connections are
sparse [1]. Finding communities in real networks is an impor-
tant analytical task, because community structures are imbued with
meaning – that is, they are highly correlated with the functionality
of the network. For example, on the World Wide Web, communi-
ties consist of web sites that share common topics [2]. In protein-
protein interaction networks [3] and metabolic networks [4], com-
munity structures correspond to functionality modules.
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Due to the significance of community structures, the problem of
community search, that is, finding the most likely community that
a vertex belongs to, is important to many real life networks and
applications [5]. Typical applications include:
• Friend recommendation on Facebook. Given the friendship

network, the system wants to suggest candidate friends to a
specific user u. Intuitively, we will only recommend to u
those who are in the same community as u are but are not yet
u’s friends.
• Advertising on social networks. People in the same commu-

nity often share common interests. If we know a user is in-
terested in a particular type of advertisements, we may push
the same type of advertisements to other people in his or her
community.
• Infectious disease control. If a person has come into contact

with a highly infectious disease, then who will most likely be
affected? Obviously, we may want to monitor people in his
or her community.
• Semantic expansion. In information retrieval, when a user

submits a keyword query, say, “image,” he may also be inter-
ested in results related to other keywords such as “pictures,”
“photo,” and so on. If a semantic link network [6] over key-
words is available, then we can expand the query by includ-
ing keywords in the same “semantic community.”

Figure 1: An example graph

To effectively perform community search, we must first deter-
mine what a good community is. The goodness of a community is
measured by the closeness of the vertices in the community. One
widely used closeness measure is a community’s minimum degree,
that is, the minimum degree of all the vertices in the subgraph in-
duced by the community. A good community is one that has a large
minimum degree. We illustrate this in Example 1.

EXAMPLE 1 (MINIMUM DEGREE). Suppose we want to find
the best community that contains vertex a in Figure 1. Intuitively,
V1 = {a, b, c, d, e} forms a community that is highly connected
with a. In fact, the subgraph induced by V1 has a minimal degree
of 3. If we include one more vertex f in the community, the minimal
degree will drop to 1.

Another possible measure is average degree. Under this mea-
sure, the best community for a will also include vertex f and a
dense subgraph V2 = {g, h, i, j, k, l}, as the average degree of
V1 ∪ {f} ∪ V2 is approximately 3.8, which is larger than the av-
erage degree of V1 (which is 3.2). Intuitively, however, V1 and V2



are more likely to be two separate communities, as they are con-
nected only by a weak link through f . Hence, the minimum degree
measure captures the intuitive notion of closeness better. In this pa-
per, we adopt the minimum degree measure for community search.
Thus, the community search problem will be finding the connected
subgraph with the largest minimal degree for a given query vertex.

Besides the above rationale, the following reasons also motivate
us to take the minimum degree as the measure of community good-
ness. First, minimum degree is one of the most fundamental charac-
teristics of a graph. For example, it is used to describe the evolution
of random graphs [7], and graph visualization [8]. The properties
found in this paper about minimal degree can shed light on other
related problems. Second, in social network analysis, minimal de-
gree has been widely used as the measure of the cohesiveness of a
group of persons [9, 5, 10]. It can be dated back to the Seidman’s
research in 1983 [9]. The author compared minimal degree to many
other measures of cohesiveness, such as connectedness and diam-
eter, finding that minimum degree is a good measure in social net-
work analysis. In a recent community search study [5], the authors
also used the minimum degree as the community measure for orga-
nizing a cock tail party. They also found that, in community search
problem, minimum degree is better than some other measures, such
as average degree and density (measured by 2|E|

|V |(|V |−1)
, where |V |

and |E| are the vertex number and edge number, respectively).
A straightforward strategy for community search is known as

the global search [5]. The search is pessimistic in the sense that
it needs to explore the entire graph before deciding the best com-
munity for the query vertex. Note that in the worst case, the whole
network may be the best community. For example, when the whole
network forms a complete graph.

In Example 2, we demonstrate a typical global search procedure
on the graph shown in Figure 1. It starts with the whole graph
and then it iteratively removes vertices that cannot be part of the
answers. The procedure is repeated until no vertex can be removed.

EXAMPLE 2 (GLOBAL SEARCH). Suppose we want to find the
best community for vertex j in the network shown in Figure 1.
We repeatedly remove vertices with the minimum degree. Vertices
m,n, f, a, b, c, d, e could be removed in turn, and we end up with
V ′ = {g, h, i, j, k}, wherein j is one of the vertices with the min-
imum degree. We can show that any subset of V ′ has a smaller
minimal degree. Hence, V ′ is the best answer.

Global search is costly as it needs to explore the entire graph.
This is unacceptable for large graphs. In this paper, we propose a
local search strategy. The intuition is that the best community for
a given vertex is in the neighborhood of the vertex. Thus, it should
not be necessary to involve the entire graph in the search. The
local search strategy works as follows: We start at the query vertex.
Initially the target community contains the query vertex only. The
community expands as we explore in the neighborhood of the query
vertex. We stop the search when the current community is the best.

The problem is, how do we know whether the current commu-
nity we have found is the best? It would be nice if the minimum
degree measure is “monotonic,” meaning as the community be-
comes larger, its minimum degree always becomes smaller. Then,
we can stop the search when the minimum degree drops below the
given threshold. Unfortunately, the minimum degree measure is
not monotonic. This is demonstrated by Example 3.

EXAMPLE 3 (LOCAL SEARCH AND NON-MONOTONICITY).
Suppose we want to find the best community for vertex a in Figure 1.
Assume the current community includes a’s immediate neighbors:
b, d, e. The subgraph induced by S = {a, b, d, e} has a minimal
degree of 2. To enlarge the community, we can add vertex c or f .
Adding f will decrease the minimal degree to 1, while adding c will
increase it to 3.

Clearly, as shown by Example 3, the minimum degree measure is
not monotonic, which means that if S is a partial result containing

the query vertex, for a vertex v that is adjacent to S, the subgraph
induced by S ∪ {v} does not necessarily have a smaller or larger
minimum degree. This poses a great challenge for us to decide
when to terminate the local search procedure.

In this paper, we present theories and algorithms for local search.
We investigate sufficient conditions for deciding whether a neigh-
boring vertex should be added to expand the community. If no ver-
tex satisfies the condition, then we terminate the search. We show
that such a sufficient condition does exist, but, in the worst case,
its evaluation may become as costly as performing a global search.
However, a typical local search always finds the best community
with much less cost than a global search.

The rest of the paper is organized as follows. Section 2 intro-
duces some background information and formulates two commu-
nity search problems: CST and CSM. Section 3 discusses how to
solve the problems using global community search. In Section 4,
we give several local search based solutions for the community
search with a threshold constraint (CST) problem. In Section 5,
we present solutions to the community search with a maximality
constraint (CSM) problem. Section 6 reports experimental results.
Section 7 reviews related work. We conclude in Section 8.

2. PROBLEM DEFINITION
In this section, we define a “goodness” measure for communities

and we define the problems of community search. We then discuss
the hardness of the problems. In this work, we are concerned with
simple graphs, that is, graphs with no self-loops or multi-edges.
Also, we focus on undirected and unweighted graphs only.

G(V,E) A graph with vertex set V and edge set E.
G[H] The subgraph of G induced by a set of vertex H .

It contains edges (H ×H) ∩ E.
degG(v) The degree of vertex v in G.
δ(G) min{degG(v)|v∈V }
H∗(G, v) Any best communities for vertex v in G.
m∗(G, v) The community goodness of H∗(G, v).
V≥k {v|degG(v) ≥ k}
Cnaive(k) Naive set of candidates for CST(k).
maxcore(G, v0) The maximum core of G w.r.t v0

Table 1: Notations

2.1 Problem Definition
Let G(V,E) denote an undirected graph with vertex set V and

edge set E. For any subset H ⊆ V , the subgraph induced by S,
denoted as G[H], is the graph whose vertex set is H and whose
edge set is (H ×H)∩E. Furthermore, we use degG(v) to denote
the degree of vertex v in graph G. Clearly, we have degG[H](v) ≤
degG(v) since G[H] is a subgraph of G. Table 1 summarizes the
notations used in this paper.

DEFINITION 1 (COMMUNITY GOODNESS [5]). LetG(V,E)
be a graph. Let H ⊆ V . We consider G[H], the subgraph induced
byH , as a community. The community goodness ofG[H] is defined
by its minimum degree:

δ(G[H]) = min{degG[H](v)|v∈H}

Minimum degree is one of the most widely used community
goodness measures [5]. One important characteristics of δ(·), which
we have illustrated in Example 3, is that it is non-monotonic. It
means δ(G[H ∪ {v}]) is not necessarily smaller than δ(G[H]).
Because of the non-monotonicity of δ(·), the problem of finding
the best community through local search is nontrivial.

PROBLEM DEFINITION 1 (CSM). For a graph G(V,E) and
an arbitrary vertex v0 ∈ V , find H ⊆ V such that (1) v0 ∈ H;
(2) G[H] is a connected subgraph; and (3) δ(G[H]) is maximized
among all possible choices of H . We denote this problem as CSM,
or community search with the maximality constraint.



For graph G and query vertex v, let m∗(G, v) denote the possi-
ble maximum community goodness, and let H∗(G, v) denote any
community that has the maximum goodness. We have:

0 ≤ m∗(G, v) ≤ degG(v) (1)

Note that the optimal solution is not necessarily unique. In general,
m∗(G, v) is determined by v and the graph structure of G.

In some applications, instead of finding communities that have
the maximum community goodness, we may be interested in find-
ing those that satisfy δ(G[H]) ≥ k, where k is a given constraint.
Consider the infectious disease control problem. Infectious dis-
eases have different risk factors. For a highly contagious disease,
we may want to choose a lower k so that people who have little
contact with the sick can also be found. For a less contagious dis-
ease, we may choose a higher k to focus on people who have very
close contact with the sick. By tuning k, we achieve flexibility in
controlling the size of the resulting community.

PROBLEM DEFINITION 2 (CST). For a given graphG(V,E),
a query vertex v0 ∈ V , and a constant k, find H ⊆ V such that (1)
v0 ∈ H; (2)G[H] is a connected graph; and (3) δ(G[H]) ≥ k. We
denote this problem as CST(k), or community search with thresh-
old constraint.

EXAMPLE 4. We use the graph shown in Figure 1 as an exam-
ple. Suppose the query vertex is a. In CSM, the subgraph induced
by H = {a, b, c, d, e} is the final solution because δ(G[H]) = 3
and other Hs will have δ(G[H]) < 3. In CST(k), if k = 3, then
the solution is still H . If k = 2, then there are multiple choices for
H . For example, {a, b, d}, {a, d, e} or {a, b, c, d, e}.

We illustrate CSM and CST in Example 4. Both CSM and CST
may return multiple answers. In fact, as shown in Section 2.2, CST
may produce an exponential number of results (with regard to graph
size). Hence, we only focus on finding one solution for CST. Al-
ternatively, we may want to find the smallest community. This new
problem, which is denoted as mCST, is formally below:

PROBLEM DEFINITION 3 (MCST). For a graph G(V,E), a
query vertex v0 ∈ V and a constant k, find H ⊆ V such that (1)
v0 ∈ H; (2) G[H] is a connected graph; (3) δ(G[H]) ≥ k; and
(4) the size ofH is minimized. We denote this problem as mCST(k).

Unfortunately, the mCST problem is NP-complete as we will
prove in Section 2.3. In this paper we focus on CST and CSM.

2.2 Relationship between CSM and CST
CSM is an optimization problem, and it has a corresponding de-

cision problem: deciding whether a subsetH ⊆ V exists that satis-
fies the three conditions specified in CST. Clearly, CST is the con-
structive version of the decision problem of CSM. In other words,
we not only need to determine the existence of the valid solution
but also need to construct an instance of the solution if the valid
solution does exist. Besides these obvious relationships, we further
establish some quantitative correlations between CSM and CST that
will serve as the foundation for solving these problems.

PROPOSITION 1 (DOWNWARD CLOSURENESS OF CST(k)).
If H is a solution to CST(k), then H is also a solution to CST(k′)
where k′ < k.

PROPOSITION 2. For a graph G(V,E) and a query vertex v, if
H is a solution of CST(k), then m∗(G, v) is no less than k.

PROPOSITION 3 (PRUNING RULE). For a vertex v with
degG(v) < k, v will not belong to any solutions to CST(k).

Proposition 1 and 2 lead to an algorithm of polynomial com-
plexity to solve CSM if we have a polynomial solution for CST.
Since m∗(G, v) lies in the interval [0, degG(v)], we can employ

a binary search procedure starting from dN−1
2
e to iteratively visit

the median of the interval to check whether the CST instance with
the median as the threshold constraint has a valid solution. In this
manner, we can solve CSM in O(log degG(v)f(N)), where f(N)
is the time complexity of CST.

For both CSM and CST, we only look for one solution because
there may exist an exponential number of solutions. To see this,
consider a graph with N vertices of degree 1 and one vertex of de-
gree N (Figure 2). Suppose the query vertex vc is the vertex of de-
gree N . Then, obviously we have m∗(G, vc) = 1. But H∗(G, vc)
could be any subset containing vc. Thus the number of optimal so-
lutions is Θ(2n), where n is the number of all vertices of degree
1. To avoid returning an exponential number of solutions, in our
problem, we only consider one of them.

c

Figure 2: A graph with 1 vertex of degree N and N vertices of
degree 1.

2.3 NP-completeness of mCST
Now we show that the mCST problem, which we introduced in

Section 2.1, is NP-complete. To do this, we prove a problem related
to mCST is NP-Complete, and we reduce that problem to mCST.

LEMMA 1. For a given graph G, a vertex v0, and an integer k,
if there exists a clique C such that v0 ∈ C and |C| = k + 1, then
C is the smallest solution of CST(k).

PROBLEM DEFINITION 4 (MCC). For a graphG(V,E) and
v0 ∈ V , find the maximum clique that contains v0.

LEMMA 2. MCC is NP-Complete.

PROOF. It is clear that MCC belongs to NP. We prove it by reduc-
ing Maximal Clique (MC), a well-known NP-complete problem, to
MCC. For any graphG(V,E), we construct a new graphG′(V ′, E′)
by adding a vertex v0 and connecting v0 to all vertices inG, that is,
V ′ = V ∪ {v0} and E′ = E ∪ {(vi, v0)|vi ∈ V }. Thus, an MCC
in G′ is an MC in G.

THEOREM 1. mCST is NP-complete.

PROOF. It is easy to see that mCST belongs to NP. Now we show
that mCST is NP-complete by reducing MCC to it. Let G(V,E) be
a graph, and let v0 be the query vertex. Consider the decision prob-
lem that corresponds to the optimization problem of MCC: Deter-
mine whether G has a clique of at least size k that contains v0. We
can construct the following decision problem for mCST. Determine
whether a solution H ⊆ V exists such that |H| = k and it satisfies
the mCST conditions: i) v0 ∈ H; ii) G[H] is connected; and iii)
δ(G[H]) ≥ k − 1. If H is the answer, then apparently G[H] is a
clique, as any node in H has degree ≥ k − 1.

3. GLOBAL SEARCH
In this section, we describe global search based solutions for

CST and CSM. The global search approach needs to visit all ver-
tices and edges of the graph, which is costly for big graphs.

3.1 k-core and Maxcore
To understand global search, we first define two concepts: k-core

and maxcore.

DEFINITION 2 (k-CORE). A subgraph of G is called the k-
core of G if it is the biggest subgraph such that each of its vertices
has a degree of at least k. Note that the k-core may contain multiple
connected components.



DEFINITION 3 (MAXIMUM CORE). For a vertex v, a maxi-
mum core with regard to v, denoted as maxcore(v), is the k-core
with the maximum k among all the k-cores that contain v.

EXAMPLE 5. Consider graph G in Figure 1. The subgraph in-
duced by {a, b, c, d, e, g, h, i, j, k, l} is the 3-core of G; the sub-
graph induced by {g, h, i, j, k, l} is the 4-core of G, which is also
the maximum core ofG; and the subgraph induced by {a, b, c, d, e}
is a maximum core with regard to vertex e, that is,maxcore(G, e).

Example 5 illustrates the concepts of k-core and maxcore. We
use global search to find the k-core for a given k: We repeatedly
remove vertices from G whose degree is less than k until no more
vertices can be removed. We need to visit every vertex to find its
degree and explore all of the edges in the graph. Hence, the com-
plexity for finding the k-core and maxcore is O(|V |+ |E|).

3.2 Solving CST and CSM
For a graph G and a query vertex v0, we now show that the k-

core and the maxcore(v0) contain the solutions to CST and CSM,
respectively. First, consider the problem of CST(k). If vertex v
belongs to any solution of CST(k), we call v an admissible vertex.
LetA be the set of all admissible vertices for CST(k). Similarly, we
can define the admissible setA′ for the problem of CSM. Example 6
illustrates the admissible sets in Figure 1:

EXAMPLE 6. Consider graphG in Figure 1 and query vertex e.
For CSM, we have m∗(G, e) = 3 and H∗(G, e) = {a, b, c, d, e}.
Since no other H∗(G, e) exists, the admissible set is simply A =
{a, b, c, d, e}. For CST(2), the solutions include {a, b, c, d, e} and
V − {m,n}. Hence, we have A = V − {m,n}.

Next, we show that A is a subset of the k-core of G. Similarly,
A′ is contained in maxcore(v0). More specifically, we have:

LEMMA 3. For graph G and query vertex v0, the connected
component Ck that contains v0 in the k-core of graph G is a solu-
tion of CST(k). Furthermore, for any other solution H of CST(k),
we have H ⊂ Ck.

LEMMA 4. For graph G and query vertex v0, the connected
component that contains v0 inmaxcore(v0), denoted byCmax(v0),
is a solution of CSM. Furthermore, for any other solutionH of CSM,
we have H ⊂ Cmax(v0).

PROOF. By definition, Cmax(v0) is a solution of CSM. If there
exists another solutionH 6= Cmax(v0), thenH∪Cmax(v0) will be
a connected component inmaxcore(v0), as bothH andCmax(v0)
contain v0. This contradicts the definition of Cmax(v0).

Lemma 3 implies that a vertex v is an admissible vertex of CST(k)
if and only if v ∈ Ck; and Lemma 4 implies that v is an admissible
vertex of CSM if and only if v ∈ Cmax. Unfortunately, evaluat-
ing these sufficient and necessary conditions is equivalent to global
search.

To solve CST, Lemma 3 implies that we can iteratively remove
vertices of less than k degree and their incident edges. Then, the
connected component that contains the query vertex is certainly a
valid solution.

To solve CSM, Lemma 4 implies that we need to find the con-
nected component containing the query vertex in the maximum
core with regard to the query vertex. We do this by using a greedy
algorithm [5]. Let G0 = G. We delete from G0 the vertex with the
minimum degree as well as its incident edges, and we denote the
resulting graph as G1. We repeat the process and create a sequence
of graphs,G0, G1, · · · , Gt, until at step t the query vertex v0 is the
next vertex to be deleted. Then, the connected component of Gi
(0 ≤ i ≤ t) with maximum δ(Gi) that contains the query vertex is
an optimum solution [5].

The above two solutions have time complexity O(|V | + |E|)1,
which means we need to visit all vertices and edges in the graph.
1The linear complexity of a global search based CSM solution is
achieved with some special technique. Please refer to [5] for its
linear implementation.

4. LOCAL SEARCH FOR CST
In this section, we devise local search algorithms for community

search. The biggest challenge is to overcome the non-monotonicity
of the minimum degree measure, which enables us to perform com-
munity search by exploring only the local neighborhood of the
query vertex. In the following, we first present a baseline local
search solution, which is of exponential complexity. Then, we
present the general framework of our linear solution. Finally, we
give optimized realizations of this framework in Section 4.3.1 and
Section 4.3.2. As we mentioned, CSM can be solved based on the
solutions to the corresponding CST problem. Hence, we focus on
CST only.

4.1 The Baseline Solution
We first give an in-depth analysis of the monotonicity of δ(·), the

community goodness function and introduce some notations. Con-
sider the exploration starting from the query vertex. At each step
we add a vertex until we get a solution H . Let v0, v1, ..., vt be a
sequence of vertices which lead to H (we refer to such a sequence
as a sequence of H). Let Hi = {v0, · · · , vi}. We have shown
that in general δ(·) is a non-monotonic function of H . More for-
mally, δ(Hi) is not necessarily smaller than δ(Hi+1). Clearly, the
monotonicity of δ(H) depends on the order in which vertices are
added to H . One interesting fact we discovered is that for any ver-
tex v0 ∈ H , we can always find a vertex sequence (each vertex is
inH) starting with v0 such that δ(Hi) is a non-decreasing function
of i.

THEOREM 2. For any vertex v0 ∈ H in graph G, there always
exists a vertex sequence v0, v1, ..., vt of H starting with v0 such
that ∀0 ≤ i < t, δ(Hi) ≤ δ(Hi+1).

PROOF. This is equivalent to proving that we can remove ver-
tices one by one from H until v0 such that the removal of each
vertex will not increase the minimal degree of the remaining ver-
tices. Suppose the current set is H ′. If H ′ = {v0}, we have al-
ready found the vertex sequence. If H ′ = {v0, vi}, then removing
vi either decreases the minimal degree (if (v0, vi) ∈ E) or does
not change the minimal degree (if (v0, vi) 6∈ E). Next, we con-
sider the case in which there are two or more vertices besides v0
in H ′. In such a case, there must be a vertex v ∈ H ′, v 6= v0
and δ(G[H ′]) ≥ δ(G[H ′ − {v}]). We just need to remove this
vertex. If such vertices don’t exist, it means that ∀v ∈ H ′, v 6=
v0, δ(G[H ′]) < δ(G[H ′ − {v}]). This only happens when v is
one of the vertices in H ′ that has the minimal degree because re-
moving a non-minimal degree vertex will only keep the minimal
degree or decrease the minimal degree. Thus, there must be two or
more such v. Removing each one of these vertices will not produce
a larger minimal degree.

Theorem 2 implies that there is always an order of exploration
that monotonically leads to a solution. Theorem 2 also implies any
solution H of CST(k) can be produced by a vertex sequence of H
starting from the query vertex v0 such that δ(Hi) ≤ δ(Hi+1) for
each i. In general the existence of such a sequence is a necessary
but not a sufficient condition to find a valid solution. To see the
insufficiency, consider the graph shown in Figure 1 and CST(3)
with query vertex e. Any vertex sequence starting with e, f will
not lead to a valid solution, but clearly δ(G[e, f ]) is larger than
δ(G[e]).

Theorem 2 leads to a straightforward algorithm which is outlined
in Algorithm 1. It starts fromH ′ = {v0} and then calls the search
function. The search function exhaustively enumerates each ver-
tex v form the neighbors of H ′ such that δ(H ′ ∪ {v}) ≥ δ(H ′). If
a solution is found, the procedure stops. Otherwise, it calls search
recursively. Theorem 2 ensures that such exhaustive enumeration
can always find a valid solution to CST(k). The solution can be
directly extended for CSM, but we omit the details here. Clearly,
this baseline solution is of exponential complexity. This motivates
us to develop a more efficient local search solution. Next, we will
present our linear solution.



Algorithm 1 Search()

Input: G(V,E), H′, k
Output: H
1: if δ(G[H′]) = k then
2: H ← H′

3: return
4: end if
5: for all vertex v in the neighbors of H′ do
6: if δ(G[H′ ∪ {v}]) ≥ δ(G[H′]) then
7: Search(H′ ∪ {v})
8: if H 6= ∅ then
9: return

10: end if
11: end if
12: end for

4.2 A Framework for Solving CST
In this section, we introduce a local search framework for CST.

As outlined in Algorithm 2, on the high level, it contains three sim-
ple steps. First, we check if the graph meets the necessary con-
dition of containing an answer to CST(k). Second, we perform
candidateGeneration(), that is, we explore from the vicin-
ity of the query vertex, and generate candidate set C, which may
contain a solution to the problem. In most cases, the second step
will find a solution to CST, but if not, in the final step, we perform a
global search (see Section 3) in the k-core of the subgraph induced
by C to find the solution.

Algorithm 2 A General Framework of CST
Input: G(V,E), v0, k
Output: solutions to CST(k)
1: if k >upperBound(G) then
2: return
3: end if
4: C ←candidateGeneration(G, v0, k);
5: if no solution is found then
6: perform global search in the k-core of G[C];
7: end if
8: return

Algorithm 2 is guaranteed to return a valid solution as long as
candidateGeneration() does not remove any admissible ver-
tex. This is summarized by Proposition 4.

PROPOSITION 4. For graph G and query vertex v0, if H ⊆
V is a solution of CST (k), then for any H ′ ⊆ V , a k-core of
G[H ∪H ′] that contains v0 is a valid solution of CST (k).

In the following, we first introduce the upper bound in Section
4.2.1. We present a naive candidateGeneration() in Sec-
tion 4.2.2 and we analyze its complexity and effectiveness in depth.

4.2.1 Upper Bound
Before we perform search, can we tell if a graphG has a solution

for CST(k) with respect to a query vertex v? Obviously, if the
degree of v is less than k, we know immediately that there is no
solution to CST(k). In this section, we establish an upper bound of
m∗(G, v). If k is larger than the upper bound, then we immediately
know there is no solution. The upper bound is given by Theorem 3.

THEOREM 3. Given a connected simple graph G(V,E), for
any v ∈ G, we have

m∗(G, v) ≤ b
1 +

√
9 + 8(|E| − |V |)

2
c

PROOF. Since G is a connected graph, we have |E| ≥ |V | − 1.
For simplicity, we use H∗ and m∗ to denote the optimal commu-
nity and its minimum degree. ThenG[H∗] has at least dm∗|H∗|/2e
edges. For the rest of the vertices in V −H∗, there must be at least
|V | − |H∗| edges to ensure G is connected. Hence,

dm
∗|H∗|
2

e+ |V | − |H∗| ≤ |E| (2)

It is also easy to see that |H∗| ≥ m∗ + 1. Thus, from Equation 2,
we have d(m

∗

2
− 1)|H∗|e ≤ |E| − |V |. By simple transformation,

we have (m
∗

2
− 1)(m∗ + 1) ≤ |E| − |V |. Solving the above

equation, we get m∗(G, v) ≤ b 1+
√

9+8(|E|−|V |)
2

c.

4.2.2 A Naive Candidate Generation Method
In this section, we present a straightforward implementation of

candidateGeneration(). We give a more sophisticated so-
lution in Section 4.3.1.

Algorithm 3 Naive candidateGeneration()
Input: G(V,E), v0, k
Output: C
1: queue.enque(v0); C ← ∅;
2: while queue is not empty do
3: v ← queue.deque();
4: C ← C ∪ {v};
5: if δ(G[C]) ≥ k then
6: A valid solution is found and Return C;
7: end if
8: for each(v, w) ∈ E do
9: if w is not visited and degG(w) ≥ k then

10: queue.enque(w);
11: end if
12: end for
13: end while
14: return C

We show an example of this pseudo-code in Example 7. In this
naive strategy, we generate candidate vertices by BFS starting from
the query vertex v0. As shown in Algorithm 3, we prune vertices
of degree less than k as we traverse the graph (Proposition 3 of
Section 2.2). Algorithm 3 runs in Θ(n′+m′) time, where n′ is the
number of vertices and m′ is the number of edges in G[C].

4.2.3 Complexity Analysis
Next, we study the time complexity of Algorithm 2 when it im-

plements candidateGeneration() as in Algorithm 3. The
last step of the global search has the same complexity as that of can-
didate generation. Thus, the complexity of Algorithm 2 is Θ(n′ +
m′). Hence, to reduce the complexity, we need to reduce n′ = |C|
and m′. Section 4.3 proposes optimization techniques to reduce n′
and m′. Before that, we first give the theoretic analysis of n′ and
m′ to evaluate the pruning ability of the naive candidate generation.

Estimation of n′.
First, the value of n′ has an obvious upper bound: |V |. In the

worst case, we have C = V (G). For example, when k = N − 1
and the graph is a complete graph with N vertices, for any query
vertex, only the entire graph will qualify. Thus, in the worst case,
the local search algorithm will not have any advantage over the
global search algorithm.

Second, the value of n′ has a tighter upper bound: |V≥k|. Let
V≥k = {v|degG(v) ≥ k} be the set of vertices in G with a de-
gree no less than k. Clearly, G[C] belongs to one of the connected
components of G[V≥k]. As an example, let G be the graph shown
in Figure 1, and let g be the query vertex. Given k = 4, we have
C = {g, h, i, j, k, l}, whose induced subgraph is a connected com-
ponent of the subgraph induced by V≥4 = {d, e, g, h, i, j, k, l}.

We show in Figure 3 the simulation of above upper bounds of
|C| and the real size of |C| found by the naive candidate genera-
tion. We generated scale free graphs of different sizes under the
same parameters as that used in Section 6.2. We randomly select
10 vertices as query vertices and record the average metrics of in-
terest. The size of the communities found by the improved local
search proposed in Section 4.3.1 is also given (denoted by ’local
search’). The simulation results show that |C| and the real commu-
nity size is quite close to |V≥k| but far away from |V |. This implies
that |V≥k| is a good upper bound of C. In the estimation of m′, we
will use |V≥k| as the approximation of |C|.
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Figure 3: Simulation of upper bounds on |C|

Estimation of m′.
Clearly, the number of edges in G[V≥k] is an upper bound of

m′. Degree distribution is one of important feature to characterize
a real network. We estimate the number of edges in G[V≥k] based
on the degree distribution of G.

Let pk be the probability that a vertex chosen uniformly at ran-
dom has degree k. Let P = {p0, p1, p2, ..., pω} be the degree
distribution of G, where ω is the largest degree of graph G, and∑

0≤i≤ω pi = 1. In general, it is reasonable to assume that ω ∈
o(|V |) for large graphs in real life. Given these assumptions, our
major result is: Given a graph G with degree distribution P =
{p0, p1, p2, ..., pω} and the maximal degree ω ∈ o(|V |), m′ can
be estimated by

|V≥k|
ω∑
t=1

t× qt = n

ω∑
i=k

pi

ω∑
t=1

t× qt (3)

where qt is defined as Equation 4. This is built upon Theorem 4
and Lemma 5. Theorem 4 gives the degree distribution of G[V≥k]
(in an asymptotic case, that is, when the size of the graph is large
enough). Lemma 5 gives the estimation of the largest degree in
G[V≥k]. We omit their proofs due to space limitations.

THEOREM 4. Given a graph G with degree distribution P =
{p0, p1, p2, ..., pω} and the maximal degree ω ∈ o(|V |). Let qt be
the probability that a vertex chosen uniformly at random inG[V≥k]
has degree t. Then we have:

qt =

ω∑
i=t

pi

(
i

t

)
pt(1− p)(i−t) (4)

where p = ζ(k)
ζ(0)

and ζ(x) =
ω∑
i=x

i× pi.

LEMMA 5. For a graph G with the largest degree ω and de-
gree distribution P = {p0, p1, p2, ..., pω}. It holds asymptotically
almost surely that the largest degree of G[V≥k] is ω as n → ∞,
where n is the number of vertices in G.

4.3 Optimization
In this section, we introduce two optimization techniques that

improve the performance of the algorithm by reducing n′ and m′.

4.3.1 Intelligent Candidate Selection
Algorithm 3 is naive in the sense that it blindly chooses vertices

from the queue. The following example shows that it may take the
naive approach more steps to find a solution.

Step 1: C={e} Q={a,c,d,f}

Step 2: C={e,a} Q={b,c,d,f}
Step 3: C={e,a,f} Q={b,c,d,g,n}

...
Step 12: C=V-{n,m} Q={}

(a) Naive selection

Step 1: C={e} Q={a,c,d,f}

Step 2: C={e,a} Q={b,c,d,f}
Step 3: C={e,a,d} Q={b,c,f}

Step 4: C={e,a,d,b} Q={c,f}
Step 5: C={e,a,d,b,c} Q={f}

(b) Intelligent selection
Figure 4: Naive vs. intelligent candidate generation

EXAMPLE 7 (CANDIDATE GENERATION). Consider the graph
shown in Figure 1. For query vertex e andCST (3), using the naive
candidate generation method, f may be added into C (as shown in
the Step 3 of Figure 4(a)), which leads to no valid solution. But
the procedure still proceeds until all vertices are exhaustively enu-
merated (overall 12 steps are needed). On the other hand, if we
always choose the vertex with the largest number of connections to
C, a valid solution can be found within 5 steps. The procedures
for these two selections are illustrated in Figure 4, where Q is the
queue from which the vertex is selected.

To reduce n′ = |C|, we propose two intelligent candidate selec-
tion strategies. The basic idea to refine the candidate generation is
using priority queue so that we can select the most promising vertex
that leads to a solution fast. Theoretically, Lemma 3 can be used
to compute the “promisingness” of a vertex. However, its compu-
tation is too costly. We are interested in lightweight heuristics of
constant cost. Next, we will propose two intelligent lightweight
heuristics.

Largest increment of goodness (lg). Selecting the vertex
that leads to the largest increment of the goodness measure is a
straight-forward heuristic since the final goal of CST is to find a
subset C satisfying δ(G[C]) ≥ k. In this strategy the priority of a
vertex v, f(v), is defined by

f(v) = δ(G[C ∪ {v}])− δ(G[C]) (5)

It is a greedy approach as it only considers the improvement of
δ(C) for the next step. Note that at any time when a vertex is added
toC, the increment of the goodness of the currentC is at most 1. In
other words, for any v, we have f(v) = 1 or f(v) = 0. Hence, this
strategy is equivalent to the random selection from vertices which
are adjacent to one of the vertices with the minimal degree in C.

Largest number of incidence (li). This is a more intelligent
selection strategy. The priority of a vertex v is defined as

f(v) = degG[C∪{v}](v) (6)

In this strategy, we select the vertex with the largest number of
connections to the selected vertices. This yields the fastest increase
of the mean degree of G[C]. In general, the lowest degree of a
graph will increase with the growth of its density, and consequently
a valid solution C with δ(G[C]) is expected to be found within a
limited number of steps if there exists such a solution.

As we have shown in Example 7, these selection strategies gen-
erally are quite efficient. However, Example 8 shows that local
information generally is not sufficient to construct a valid solution
within the WHILE loop. In this case, we need to perform a global
search in the k-core of G[C] (line 6) of Algorithm 2. This step
ensures a valid solution, as stated in Proposition 4.

EXAMPLE 8 (HARDNESS OF SELECTION). Continue Exam-
ple 7, by li, it is quite possible that f is selected after e. As a
result, even after all vertices are visited, no solution can be found.

Complexity Analysis
Let n′ and m′ denote the number of vertices and the number of
edges in G[C], respectively. In general lg and li can be imple-
mented in O(n′+m′ logn′) time, because each time a new vertex
is added into the queue, at most d queue update operations need to
be executed (where d is the degree of this vertex). As a result, at
most m′ update operations will be executed. Each queue operation
(insert, delete, or priority update) generally needs O(logn′) time.

By careful design, li can be implemented inO(n′+m′), achiev-
ing O(1) cost of expansion. We maintain a collection of lists each
of which, contains vertices of V with the same f(v). Each time a
vertex is added to C, the f(·) value of its neighbors (except those
already in C) will increase 1. For each of these influenced neigh-
bors, we move v from the original f(v)’s list to f(v) + 1’s list.
In this manner, we can always find one vertex with maximal f(·)



in O(1) time. We illustrate the above procedure in Figure 5 and
Example 9.

Figure 5: An example of the data structure used in li heuristic.

EXAMPLE 9. Consider the example graph in Figure 1. Sup-
pose we have added e and a into C (candidate vertices). Then we
have f(b) = f(c) = f(f) = 1, f(d) = 2. According to the f()
function value (i.e. the number of incidence to C), we can orga-
nize C’s neighbors into two different lists, which are shown in the
left part of Figure 5. We also record a pointer to the list with the
maximal incidence. The pointer helps find that node d has the most
incidences toC (Line 3, Algorithm 3). Then, we move d from its list
into C (Line 4, Algorithm 3). And update the two lists by moving
b and c from the list f(.) = 1 to the list f(.) = 2. In this way, we
keep the freshness of the lists.

4.3.2 Intelligent Expansion
We have created a strategy to prune the neighbors we need to

visit, i.e. reducing m′. The basic idea is to sort the adjacent list
of vertices. We use the adjacent list to represent a graph and sort
the adjacent list of each vertex into the descending order of de-
gree. Then, during candidate generation, when we expand a ver-
tex’s neighbors (Line 9-11 in Algorithm 3), we stop the expansion
immediately when the neighbor has a degree of less than k. Con-
sequently, we can avoid the cost of scanning all neighbors.

For a vertex with d neighbors, we need O(d log d) time to or-
der its adjacent list. To avoid this cost, we perform the order-
ing as a pre-computation step before online query processing. In
real life applications such as an online social network, numerous
community queries may be issued by users. In these cases, pre-
computation to order the adjacent list is desired. When the graph
is dynamically evolving, maintaining the order of adjacent lists is
of marginal cost. We can use a binary search tree to represent the
ordered adjacency list, costing us onlyO(log(d)) each time the list
changes.

Clearly, this optimization is only effective for local search and
cannot be used to speedup global search. Our experiments show
that this optimization boosts local search significantly.

5. LOCAL SEARCH FOR CSM
The goal of CSM is to find the best community for a given ver-

tex. The challenge is that the goodness measure δ(·) is not mono-
tonic. In Section 4.1, we have shown an exhaustive enumeration
approach. But it is of exponential complexity. In Section 2.2, we
introduced a method for solving CSM by repeatedly calling CST. In
this section, we devise a more efficient, bottom-up solution. The
algorithm takes 3 steps. First, it expands the search space from the
query vertex v0. Second, it generates a candidate vertex set C in
the search space. Third, it invokes the maximum core method to
find the final solution in the candidate set.

5.1 Expanding the Search Space
In this step (line 1 to 15 of Algorithm 4), our goal is to expand

the search space and find a subset H whose δ(G[H]) is as large as
possible while pruning as many invalid vertices as possible under
the linear cost. We start with v0, and at each step we select the
vertex that is the local optimal and add it into the current result
set. Here, we use the li (largest number of incidence) strategy to
select the local optimal vertex (line 6 to 7). Then, at the end of
each iteration, we know that any vertex whose degree is smaller
than δ(G[H]) + 1 cannot appear in any better solution. Thus, in
line 14, we expand the set of vertices we need to visit by using H
for filtering.

Algorithm 4 A local-search framework to solve CSM
Input: a graph G(V,E), v0 , −∞ < γ <∞
Output: H

{Step 1: Iterative searching and filtering.}
1: H ← ∅ /* the best solution found so far */
2: A← {v0} /* vertices we have visited */
3: B ← {v|(v, v0) ∈ E} /* vertices we need to visit */;
4: s← 0
5: while B 6= ∅ and s ≤ e−γ(b |E|−|V |

(δ(G[H])+1)/2−1
c − |H|) do

6: Let v be the vertex with most links to A from B;
7: s← s+ 1; A← A ∪ {v}; B ← B − {v};
8: if δ(A) > δ(H) then
9: H ← A;s← 0;

10: if δ(H) = min{degG(v0), b
1+
√

9+8(|E|−|V |)
2

c} then
11: Return H;
12: end if
13: end if
14: Add v’s neighbors with degree larger than δ(G[H]) into B;
15: end while

{Step 2: Generating candidates}
16: C ← Generate candidate vertex set based on H or A;

{Step 3: Finding the solution}
17: H ← maxcore(G[C], v0);
18: return H;

One critical question is when we can stop expanding the search.
Clearly, H is the optimal solution if

δ(H) = min{degG(v0), b
1 +

√
9 + 8(|E| − |V |)

2
c} (7)

However, Equation 7 is a sufficient but not necessary condition. For
instance, if an invalid vertex is introduced into H in the early stage
of expansion,H may never reach the upper bound, even if it already
contains the optimal solution. To solve this problem, we introduce
another upper bound. We consider the extra number of vertices
that need to be added into the current H in order to improve the
minimum degree ofG[H], given that a better solution that contains
the current H exists. This upper bound is given by Corollary 1,
which is derived from Theorem 5.

THEOREM 5. Let G(V,E) be a connected graph, and v ∈ V
be the query vertex. If H is a solution to CST(k), we have

|H| ≤ b |E| − |V |
k/2− 1

c

PROOF. Since G is connected, we have |E| ≥ |V | − 1. Also,
G[H] has at least k|H|/2 edges. There exist at least |V | − |H|
edges incident with vertices in V −H to maintain the connectivity
of graph G. Hence, we have k · |H|/2 + |V | − |H| ≤ |E|, which
leads to |H| ≤ |E|−|V |

k/2−1
.

COROLLARY 1. Let G(V,E) be a connected graph, and let H
be the current optimal solution found so far in Algorithm 4, if there
exists H ′ ⊃ H such that δ(G[H ′]) = δ(G[H]) + 1, we need to
add at most

b |E| − |V |
(δ(G[H]) + 1)/2− 1

c − |H|

vertices to find H ′.
From Corollary 1, we can see that the larger δ(G[H]), the tighter

the upper bound. So this upper bound has better pruning power
when the solution has larger m∗.

Given the above upper bound, we use two parameters s and γ
(the latter is exposed to users) to control the searching space. The
value of s denotes the number of vertices that have been added to
H (see line 7 and line 9). In line 5, we use

s ≤ e−γ(b |E| − |V |
(δ(G[H]) + 1)/2− 1

c − |H|) (8)



with −∞ < γ < ∞ to control the search space. We terminate the
search when the upper bound is reached. Note that when γ = 0,
Eq 8 degrades into the exact bound given in Corollary 1. When
γ > 0, the number of extra vertices that will be added into H will
be less than the exact bound. When γ → −∞, no constraint on
s is specified. We will come back to these parameters after the
introduction of following steps of the algorithm.

5.2 Generating Candidates
In the second step, we generate a candidate set from H obtained

in the first step. Specifically, we propose two solutions to generate
C (line 16), and we analyze the tradeoff between their quality and
performance. Let Cnaive(k) be the result of Algorithm 3. That is,
Cnaive(k) is the set of vertices obtained by iteratively removing
vertex of degree less than k from the neighborhood of vertex v0.

Solution 1: C ← A. In this case, we have the following result:

THEOREM 6. Given graphG and a query vertex v0, when γ →
−∞, Algorithm 4 finds an optimal solution for CSM.

PROOF. Consider when the WHILE loop exists in Algorithm 4.
Let k = δ(G[H]). Clearly, we have m∗(G, v0) ≥ k. We have
Cnaive(k) ⊆ A. Then, we haveCnaive(m∗(G, v0)) ⊆ Cnaive(k).
Thus Cnaive(m∗(G, v0)) ⊆ A. Thus maxcore(G[A], v0) is an
optimal solution.

When C ← A, Algorithm 4 also allows us to trade quality for
performance by tuning parameter γ. Specifically, when γ is closer
to −∞, the solution is of higher quality; when γ is closer to ∞,
better performance can be achieved. We will discuss more about
this tradeoff in the experiments section.

Solution 2: C ← Cnaive(k). Here, k = δ(G[H]).

THEOREM 7. Given graph G and query vertex v0, Algorithm 4
always finds an optimal solution: maxcore(G[Cnaive(k)], v0),
where k = δ(G[H]).

PROOF. For a graph G and a query vertex v0, Cnaive(k) be-
comes larger when k becomes smaller. Hence, for any k with
≤ m∗(G, v0), Cnaive(k) contains all valid vertices. Since Al-
gorithm 4 will only return a subset H ⊆ V with k = δ(G[H])
no larger thanm∗(G, v0), maxcore(Cnaive(k), v0) is the optimal
solution of CSM(G, v0).

Note that the choice of γ has no influence on the quality of the
solution, but it may influence the running time. In general, when
γ → −∞, it is quite possible to find a complete solution or at least
a good partial solution before the second step since we have given
enough number of tries to find a good H . However, this comes at
high cost of run time. If a solution is already found, or a partial
solution is found in the first step, the maxcore procedure will be
unnecessary or use little time. Hence, it is possible for the existence
of an optimal γ leading to the minimal running time. We will show
this in the experiment section.

Finally, we highlight that Algorithm 4, under a different imple-
mentation strategy, runs in O(|V | + |E|) time in the worst case.
However, in general, similar to CST, in CSM a smaller number of
vertices are expected to be visited for an optimal solution in our
local-search solutions than their global search competitors.

6. EXPERIMENTS
In this section, we use experiments on real life graphs to show

the effectiveness and efficiency of our local search method. We also
conduct experiments on synthetic graphs to show its scalability. We
implemented all of the algorithms in C++ and ran the experiments
on a PC with AMD AthlonTMX2 Dual-core QL-62 at 2GHz, 2G
memory.

6.1 Experiments on Real Life Graphs
6.1.1 Datasets

We used four real life large graphs in our experiments: DBLP,
Berkeley, Youtube, and LiveJournal. DBLP is an author collabo-
ration network, where each vertex represents an author and each
edge represents a coauthor relationship. Berkeley is a web graph
with nodes representing pages from berkeley.edu and stanford.edu
domains and edges representing hyperlinks between them. We ig-
nored the direction of the links. Youtube [11] is a user-to-user link
network. LiveJournal is an online social network. For each dataset,
we only consider the largest connected component. The statistics
of these graphs are reported in Table 2, where the minimal vertex
degree of the maximal core of this graph is given as δ∗(G).

Network #Vertex # Edge δ∗(G) Opt.(ms) k=20 40 60
DBLP 481K 1.72M 114 703 0 0 0
Berkeley 654K 6.58M 202 2328 9 0 0
Youtube 1.1M 3M 52 1359 0 0 0
LiveJournal 4.0M 34.7M 360 2381 0 0 0

Table 2: Basic information of real dataset

6.1.2 Case Study
We presented two case studies to justify the minimal degree based

community search. The first is on DBLP. We used "Jiawei Han",
who is a renowned scientist in Data Mining, as the query vertex.
After setting k = 5, we got the community shown in Figure 6(a)
using ls − li. We found that these six authors are all leading sci-
entists in data mining community and their cooperation is very fre-
quent. For example, Jiawei Han and Jian Pei have coauthored over
37 papers, and Haixun Wang has coauthored with Philip S. Yu and
Jian Pei over 46 and 15 papers, respectively.

The second case study is on WordNet. WordNet is a semantic
network, in which each vertex represents a specific sense, and each
edge represents a certain semantic relationship between senses. In
this case study, we used the word pot as v0. Using ls − li with
k = 3, we got the community shown in Figure 6(b). We found
that the senses in the community are highly related in semantic:
all of them are about the vessel. pot, bowl, dish are some vessel
entity. vessel and container are two hypernyms of those entities.
And containerful is an adjective word related to containers.

Jiawei
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Roberto
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S. Yu
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Pei

Ke
Wang
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Wang

Wei 

Wang

(a) Jiawei’s commu-
nity
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vessel container
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(b) Community for
"Pot"

Figure 6: The effectiveness of community search.

6.1.3 Results for CST
We evaluate the efficiency of our local search solutions for CST

by comparing it with the global search solution introduced in Sec-
tion 2. We denote the global search as global, and we denote the
three versions of local search, i.e., the local search with naive can-
didate generation, li, and lg as ls-naive, ls-li and ls-lg respectively.

Solutions to CST are sensitive to the input parameter k. To eval-
uate the performance of different solutions, we tested each method
with k = s, 2s, 3s, ..., 8s, where s = δ∗(G)/10. For each k,
we randomly selected 100 vertices as the query vertex from the k-
core of the graph so that there was always a meaningful solution
containing the query vertex. Then, we averaged the query time of
these 100 query vertices.

Baseline solution. We first showed that the baseline solution in
general is costly on big graphs. For each real network, we selected
k = 20, 40, 60. For each k, we randomly selected 100 vertices



with a degree of no less than k as the query vertex. We recorded in
the last three columns of Table 2 the number of vertices for which
the query result can be returned within 1 minute. The results show
that in most cases the baseline solution cannot produce result in the
given time. Hence, in the following experiments, it will be omitted.

Efficiency of off-line ordering. We first justified the opti-
mization of local search by ordering the adjacency list. We just give
the results on DBLP data. Similar results on other real life graphs
were obtained and omitted to save space. In Figure 7, we compare
local search with optimization (opt) to local search without opti-
mization (non-opt). We can see that, for both ls-li and ls-lg under
most parameter values of k, the optimization technique brings an
obvious speedup. The optimization technique has a linear cost as
it only requires sorting the adjacent list of each vertex. For exam-
ple, as reported in Table 2, for DBLP data, it only incurs 703ms.
Hence, in all the following experiments, all local search solutions
are optimized in this way.
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Figure 7: The effectiveness of the optimization technique.

Performance for CST. We show the performance (mean run-
ning time as well as its std) of local search solutions for CST in
Figure 8. We can see that, in general, local search performs better
than global search in most cases. When k increases, the advantage
of local search over global search becomes more obvious. In the
best case, for example when k is large on DBLP and Berkeley, ls-li
or ls-lg is two orders of magnitudes faster than global search. Only
when k is small, global search is comparable to naive local search
and the two optimized local search solutions. The reason is that
when k is small, most vertices in the graph tend to be involved in
the answer, which favors global search. We can also see that among
all strategies of local search, in most cases, ls-li performs the best.
The running time for ls-li almost monotonically decreases with the
growth of k. This implies li is quite effective when k is large.

The stds show that the global approach is the most stable algo-
rithm. This is because the search space of the global algorithm is
always the entire graph. In contrast, the local search solutions need
to search the entire graph only when the search within the local
neighborhoods fails. That is to say, in most cases, local search so-
lution returns results quite fast. Only in some rare cases, its running
time is close to global solution (but will not be worse than global
search). That is why our solution has larger stds. From the ex-
perimental results, we also can see that even considering the worst
case, that is mean running time+ std, ls − li is better than global
in most cases.

In some rare cases, for example in Figure 7(c), the global algo-
rithm is better than ls− lg or ls−naive. The reason is that ls− lg
and ls − naive are not very intelligent. Their search spaces al-
though are less than the global one, in many cases are close to the
global one. Furthermore, in general local search solutions need to
select the best vertex from candidates, which adds extra computa-
tion cost. Consequently, ls− lg or ls− naive may consume more
running time. Similar results can be found from Figure 8(b), 8(c)
and they can be explained similarly

Influence of small k on local search. To take a close look
at the influence of small k (from 1 to 10), we conducted more ex-
periments, the results of which are shown in Figure 9. It is quite
interesting to note that when k is extremely small, local search is
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Figure 8: The efficiency of different solutions to CST
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Figure 9: Performance of CST for small k

significantly better than global search (it outperforms global search
by two orders of magnitude). This is because when k is extremely
small, local search tends to find smaller communities. For exam-
ple, when k = 1, any edge incident with the query vertex will be
immediately returned as an answer; when k = 2, any cycle con-
taining the query vertex is an answer. In summary, local search is
consistently better than global search across a wide range of k.

Performance over arbitrary vertices. In the above exper-
iments, the query vertices come from k-core, which means that a
valid community certainly exists. In this experiment, we tested the
performance over arbitrary vertices for which a valid community
does not necessarily exist. We randomly select 100 query vertices
whose degree is no less than k from DBLP (otherwise we can surely
find no community for these vertices). We compare the best of lo-
cal search solutions ls− li to the global search. The result is shown
in Figure 10. Similar to previous experiment results, local search is
better than global search in almost all the cases. When k grows, the
search space of local search becomes smaller. As a result, the mean
running time of local search decreases. Instead, the global search is
not aware of k and consistently consumes almost the same running
time.

Rationale of local search. To understand the rationale of lo-
cal search, we report the answer size and the number of visited
vertices in the search. We show the results for DBLP in Figure 13
(results on other real networks are similar and are omitted to save
space). We can see that the local search method tends to produce a
small community. In some cases, the community found by ls-li or
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Figure 10: Performance over arbitrary vertices

ls-lg is an order of magnitude smaller than that produced by global
search and ls-naive. The comparison of the number of visited ver-
tices shows that local search visits a much smaller number of ver-
tices than global search. In many cases, local search outperforms
global search by two orders of magnitude. Both smaller answer
sizes and a fewer number of visited vertices explain the advantage
of local search over global search.

6.1.4 Results for CSM
Recall that there are two local search solutions to CSM. We de-

note the one that generates C by C ← A as CSM1, and the other
as CSM2. We also compare them with global. In local search,
we present the results of li only, since previous results have already
shown its efficiency and effectiveness.

Performance for CSM. For CSM1, we can trade the quality
of the solution for performance by tuning parameter γ. For the
sake of fair comparison, we set γ → −∞ such that CSM1 is not
constrained by size s. The result is shown in Figure 11. From the
comparisons, we can see that CSM2 performs the best. CSM1
consumes the most time since we remove the size constraint of s,
which means that the search procedure will exhaustively search a
huge space. In the next experiment, we will show that by tuning γ,
CSM1 can run much faster than global search without sacrificing
the quality.

Effect of γ on CSM1. For CSM1, γ controls the tradeoff be-
tween quality and performance. We ran CSM1 with γ varying
from 1 to 15 to observe the change in quality and run time. The
quality of CSM1 is measured by

ra = Σv0δ(H
′)/Σv0δ(H)

, where H ′ is the answer found by CSM1, H is one of the op-
timal answers found by a global search, and the Σ runs over all
randomly selected query vertices. We also summarize the time ef-
ficiency measured by

rt = Σv0t1(v0)/Σv0t2(v0)

, where t1(v0) is the run time ofCSM1 for query vertex v0, t2(v0)
is the run time of the global search, and the summarization runs
over all sampled query vertices.

The tradeoff between quality and performance is shown in Fig-
ure 14. As expected, both performance and quality decrease with
the growth of γ. However, performance drops drastically faster
than quality. As a result, even running for a short duration, the
quality produced by CSM1 still remains almost at one hounded of
percent, especially for DBLP and Berkeley. For each of the three
networks, we can observe a critical point (identified by the dotted
line), before which a minor drop of solution quality will bring us a
significant improvement of performance. The above results clearly
show that the trading of quality for performance in CSM1 is quite
effective. In real applications, users can specify γ based on their
requirement for the tradeoff between performance and accuracy.

Effect of γ on CSM2. From Figure 15, we observe that for
each graph there is a certain γ that leads to the minimal overall run
time of CSM2. The influence of γ on the performance of CSM2
generally depends on the network structure. It seems that Berkeley
is more sensitive to γ than the other two networks. However, our
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vertex degree on DBLP

results show that generally when 4 ≤ γ ≤ 12, minimal run time of
CSM2 can be achieved.

Selection of γ. Next, we give guidelines for selecting an ap-
propriate γ for a query vertex when solving CSM . In general,
the selection of γ depends on the size of the resulting community,
which is determined by the local structure near the query vertex.
The larger the community size, the larger the search space. Hence,
γ should be tuned accordingly. However, it is hard to know the
exact community size before a local search is executed. We found
that, through the empirical analysis of DBLP data, the degree of
the query vertex is a good hint of the vertex’s community size. We
used global search to find a maximal community for a query ver-
tex in DBLP. For each degree, we randomly selected 10 vertices
and recorded their average community size. The results are shown
in Figure 12. We observe that the community size generally de-
creases when the degree of the query vertex increases. Hence, we
should choose a smaller γ when the query vertex has a large degree
(recall that smaller γ leads to larger search space).

6.2 Experiments on Synthetic Networks
To test the scalability and the sensitivity-to-community-structure

of our solutions, we generated a collection of synthetic networks.
Community search is meaningless on a network without commu-
nity structures, hence we used a generator [12] that can generate
synthetic graphs with a varying degree of "clearness" of commu-
nity structure. It generates a graph using three parameters α, β,
and µ. The degree and the community size follow the power-law
distribution with exponent −α and −β, respectively. Parameter µ
indicates the proportion of a vertex’s neighbors that reside in other
communities. Clearly, by tuning µ, we can vary the clearness of
the community structure of the generated synthetic network. Since
ls-li is the most efficient local search method, in the following ex-
periment, the results of the local search are produced by ls-li.

Scalability. Using the above network model, we generated an
ensemble of synthetic networks with size varying from 200K to
1M with α = 2, β = 3, µ = 0.1.

The scalability results of the local search are shown in Figure 16.
We found that ls-li, CSM1, and CSM2 are consistently more ef-
ficient than a global search even on graphs with millions of ver-
tices. Note that the result for CSM1 was obtained with 100% ac-
curacy (we omitted the accuracy result). The efficiency of CSM1
is quite impressive since it consistently outperforms a global search
by about three orders of magnitude without sacrificing the accuracy.
We also found that the run time of local search grows more slowly
than global search when the graph size increases. In some cases, for
example inCST , the advantage of a local search over global search
is even more obvious when the graph is larger. These observations
verify that a global search needs to visit all vertices. In contrast, a
local search only needs to visit the limited neighborhoods around
the query vertex. When the neighborhood grows more slowly than
the whole graph size, a local search is certainly more efficient than
a global search.

Sensitivity to community structure. Local search is sensi-
tive to the clearness of community structures in the network. The
more obvious the community structure, the more efficient local



search. To verify this conjecture, we generate synthetic networks
with µ varying from 0.1 to 0.5. Other parameters were the same as
the previous experiment. The larger the value of µ, the clearer the
community structure.

We present the result in Figure 17. It is clear that ls-li and
CSM1 are consistently and significantly better than global search
for different µ. CSM2 exhibits a similar performance as global
search, but is still better than global search. The results in Fig-
ure 17(c) show that CSM1 can help us find a good tradeoff be-
tween quality and performance, independent of the community struc-
ture of the network.

We can also see that either the local search (both solutions of
CST and CSM ) or global search consumes more time when the
network shows vaguer community structure. When µ is large, the
boundary of the communities become vague, thus, for most of k,
the result of CST (k) that contains the query vertex will become
larger, and the maximal core of the graph tends to become larger.
As a result, for both local search and global search, the run time
increases with the growth in the answer size.
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Figure 13: Answer size and visited vertex size in local search

7. RELATED WORK
The work presented in this paper is closely related to community

detection, local search on graphs, and k-core decomposition.

Community detection. Community detection was first mod-
eled as a modularity optimization problem. Modularity [1] is a
well-known measure of the goodness of non-overlapping divisions
in a network. Unfortunately, finding the division that maximizes
the modularity is NP-complete [13]. A typical solution to optimiz-
ing modularity is the Newman-Girvan approach [1], which derives
good partitions on many real networks but it takes O(|E|2|V |), or
O(|V |3) time on a sparse graph. It was also shown that modularity
optimization may fail in some special networks [14].

Many successors devoted their efforts to improving the quality
and performance of community detection. In recent years, label
propagation has attracted wide research interest since it in general
can produce high-quality communities with almost linear time [15,
16]. In real applications, only top clusters usually interest users.
A solution [17] was proposed to mine the top clusters of a net-
work. Sparsification that can preserve the community structure is
also used to reduce the size of the graph so that community detec-
tion on the sparsified graph is more efficient [18].

Another direction of efforts focuses on extending current solu-
tion to support more semantics of communities. The real social net-
works usually have overlapping communities [19], i.e., vertices are
shared among different communities. Some efficient approaches
for the identification of overlapping communities in large real net-
work have been proposed, including clique percolation method [20],
q-state Potts model based method [21]. Considering the influence
of attributes of edges on the semantic of community, SA-Cluster,
which utilizes both structure and attribute information, is proposed
for graph clustering [22].

All these works do not consider community search, which was
first proposed in [5]. The community search problem addressed
in this paper is a special case of that proposed in [5], where they
intend to find a community containing a set of query nodes while
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in our problem we are interested in querying the community for a
single vertex. However, they solve the community search problem
by global search.

Local search for communities. In recent years, local search
for communities in real graphs is attracting ever-increasing research
interests [29, 30, 31, 32]. Aaron [29] first proposes the problem to
find a community with size constraint k for a certain vertex. But
he uses "local modularity" as the community goodness measure,
which characterizes the relative density within the community to
outside of the community. According to the new measure, he pro-
poses a heuristic algorithm with quadratic time complexity regard-
ing to k. Bagrow [30] further improves the performance by select-
ing the vertex with largest "outwardness", where outwardness of
vertex v is the number of v’ neighbors outside the community mi-
nus the number inside. Local search of community is widely used
in existing Sybil defense schemes [31]. Their basic idea is that lo-
cal community around a trusted node is also trustworthy [31]. And
Wanyun [32] studies the overlapping structure of local search.

These local search methods [29, 30] find communities with size
constraint to limit the search space. As a result, they cannot en-
sure to find the best community under corresponding community
goodness measure. Another weakness is that the size constraint as
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an input parameter is hard to select. In general, each vertex has
its own the most appropriate community size. Either predefining a
global parameter or trying different parameters blindly can hardly
find meaningful results.

k-core decomposition. The technique used in this paper is closely
related to the estimation of giant component size of random graphs
[23, 24] and k-core decomposition [25, 26]. The threshold of sud-
den emergence of a giant k-core in a random graph is theoretically
studied in [25]. Newman et al. [24] proposed a novel method to
compute the mean component size of random graphs with arbitrary
degree distribution using generating function. k-core decomposi-
tion is empirically investigated on many real large networks and
shown to be a new perspective to characterize the structure and
function of real networks [27]. k-core decomposition is also used
to visualize large complex networks [26]. An external memory
based k-core decomposition solution is developed to handle mas-
sive networks [28]. These techniques are rarely used for commu-
nity search.

8. CONCLUSION
We investigate the problem of finding the best community con-

taining a given query vertex in its neighborhood. We propose a
local search method for this purpose. Local search is more effi-
cient than global search since global search needs to visit all ver-
tices in the network for community detection. We address the local
search challenge that arises from the non-monotonicity of commu-
nity goodness measure. In this paper, we propose the CST and
the CSM algorithms to solve a variety of community search prob-
lems. We conduct extensive experiments on synthetic and a variety
of real life, million-node networks. Our future work will consider
constraints in community search, so that we can support applica-
tions in many emerging social settings, such as micro-blogging and
online social networks.
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