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ABSTRACT
A great deal of research has been conducted on modeling and dis-
covering communities in complex networks. In most real life net-
works, an object often participates in multiple overlapping commu-
nities. In view of this, recent research has focused on mining over-
lapping communities in complex networks. The algorithms essen-
tially materialize a snapshot of the overlapping communities in the
network. This approach has three drawbacks, however. First, the
mining algorithm uses the same global criterion to decide whether
a subgraph qualifies as a community. In other words, the criterion
is fixed and predetermined. But in reality, communities for differ-
ent vertices may have very different characteristics. Second, it is
costly, time consuming, and often unnecessary to find communi-
ties for an entire network. Third, the approach does not support
dynamically evolving networks. In this paper, we focus on online
search of overlapping communities, that is, given a query vertex,
we find meaningful overlapping communities the vertex belongs to
in an online manner. In doing so, each search can use communi-
ty criterion tailored for the vertex in the search. To support this
approach, we introduce a novel model for overlapping communi-
ties, and we provide theoretical guidelines for tuning the model.
We present several algorithms for online overlapping community
search and we conduct comprehensive experiments to demonstrate
the effectiveness of the model and the algorithms. We also suggest
many potential applications of our model and algorithms.
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1. INTRODUCTION
Most complex networks in nature and human society contain com-

munity structures that serve as functional building blocks for the
networks. Furthermore, communities often overlap with each oth-
er, that is, a vertex in a network may belong to more than one com-
munity.
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Figure 1: A toy social graph

1.1 Overlapping Communities
Overlapping community structures can be observed in many real

networks, including social networks, biology networks, and semat-
ic networks, and they are vital in revealing the internal structure of
large networks [1]. The ubiquity of overlapping communities signi-
fies the importance of finding overlapping communities in graphs.

Communities can be defined in many ways. In general, a com-
munity refers to a group of vertices that are densely connected to
each other and sparsely connected to other vertices in the graph.
The density of a community usually is measured by its average de-
gree. In this paper, we use k-cliques [1] as the building blocks of
a community. We will show the rational in Section 3. A k-clique
is a complete graph of k vertices. Given a graph G, we can find
all k-cliques in G. We say two k-cliques are adjacent if they share
k − 1 vertices in G. We can then create a k-clique graph for G. In
the k-clique graph, each vertex is a k-clique and an edge between
two vertices means the two k-cliques they represent are adjacent
in G. A community is defined as a connected component, called a
k-clique component, in the k-clique graph. Clearly, the larger the
k value, the denser the communities. By tuning k, we obtain com-
munities of different density. Next, we use a toy social network to
illustrate overlapping communities.

EXAMPLE 1 (OVERLAPPING COMMUNITIES). Consider the
toy social graph shown in Figure 1. Suppose we need to find the
communities containing Bob. When k = 3, we get two overlapping
communities: abcde1 and bfghi (for simplicity, we use the first
character of a person’s name to represent the person). When k =
4, we find two communities: abcde and bfhg. bfhg is denser than

1In the following text, we use ’abcde’ to denote the clique consist-
ing of vertex set {a, b, c, d, e}



bfhgi because Issac, who has fewer connections to the community,
is excluded.

1.2 OCD vs OCS
There are two related problems: overlapping community detec-

tion (OCD), which finds overlapping communities in the entire net-
work, and overlapping community search (OCS), which finds over-
lapping communities that a specific vertex belongs to.

The difference between OCD and OCS is clear. For a given graph,
OCD takes k as input, and finds overlapping communities in the
entire graph, using a batch process. As a result, all detected com-
munities are of the density that is not less than the same threshold.
On the other hand, OCS takes a vertex and a specific k as input,
and finds overlapping communities containing the vertex, using an
online process.

One common operation in community analysis is to retrieve the
communities containing a vertex. To support online query answer-
ing by OCD, we need to detect and materialize all communities in
an offline pre-computation stage and then index the communities.
In contrast, with OCS, we just need to specify the vertex of interest
in the query. Using OCD to support this common operation is less
desirable for large graphs due to the following reasons.

• First, it is costly and time consuming to find communities
for the entire graph by OCD. OCD in general is NP-hard,
and many real life graphs are quite large, with millions or
even billions of nodes. For example, the friendship network
of Facebook [2] contains over 800 million nodes and 100
billion links. As a result, OCD is computationally prohibitive
on real large graphs. In contrast, with OCS, we just need
to find communities within the local neighborhoods of the
vertex. In the experimental section, we will show that in most
cases, our OCS solution only needs several milliseconds to
find answers, independent of the entire graph size.

• Second, OCD uses a global criterion for community detec-
tion for all vertices in a network. The semantics of the dis-
covered community in general heavily depends on the pa-
rameters. Example 1 has shown that for the same vertex, a
different k leads to communities of different density and d-
ifferent semantics. Results on real networks (the details are
presented in the experiment section) further show that under
a given k, some vertices may have no corresponding valid
communities. In other words, a fixed k is not appropriate for
all vertices. OCD does not support using the most appropri-
ate k for each individual vertex.

• Third, it is difficult for OCD to support dynamically evolving
graphs. Graphs in real life are always evolving over time.
OCD can only be used for offline analysis. Generally, we
cannot afford to run OCD very frequently. As a result, a so-
lution of OCD usually loses its freshness and effectiveness
after a short period of time. In contrast, with OCS, we are
free to issue queries for any vertex, which will not signifi-
cantly hinder system performance.

In summary, OCD plus indexing suffers when the graph is dy-
namically evolving or users want to tune the density parameters
for a better result. Because it is costly to rerun OCD and rebuild
the index. Unfortunately, most real networks, such as Facebook
friendship networks, are evolving and users in these networks usu-
ally expect to freely explore his or her neighborhood community.
This motivates us to study online OCS.

1.3 Challenges
To understand the major challenges of OCS, we compare OCS

with a related and well studied problem: Community Search (CS).
Given a vertex (or a set of vertices), community search finds the
community (instead of a set of overlapping communities) that con-
tains the vertex [3]. In the following analysis, we show that CS and

OCS are fundamentally different, and methods of CS cannot be di-
rectly applied to solve the OCS problem. The challenges of OCS
are summarized as the follows:

• Our first challenge lies in modeling the overlapping commu-
nity search. CS and OCS have different semantics. For OCS,
each community has a “functioning model”. For example, a
person may be part of a “weekend hiking” community and a
“software engineer community” at the same time. If we mix
the two communities, then we incur a loss of semantics. Typ-
ical CS approaches cannot tell the difference. For example,
one approach finds the subgraph that has the largest mini-
mal degree as the community [3]. Clearly, if two subgraphs
satisfy the criterion, then their union also satisfies the criteri-
on. This shows that CS is not a good model for overlapping
community. In comparison, OCS is more semantically aware
in the sense that its goal is more about finding a functioning
module that can better reveal the role of a vertex. Hence, we
need to define the community more carefully and precisely
to reflect this requirement. Specifically, we need to prescribe
when two overlapping groups can be merged into a single
community, and when they are two separate communities.

• Our second challenge is that OCS is computationally hard-
er than CS. Intuitively, in OCS, all communities need to be
enumerated. In some extreme cases, when there are an ex-
ponential number of valid communities, the enumeration is
quite costly. Even if there is only a small number of valid
communities, finding them among an exponential number of
candidates is still a great challenge. In contrast, in most C-
S [3], for a given query vertex, there is at most one commu-
nity to detect.

• Our third challenge is to adopt approximate approaches so
that we can scale to large graphs with millions of nodes.
Due to its computation intractability, it is difficult to scale
up to million-node real life graphs. Finding the approximate
results without compromising too much the quality of the
solution (particularly the semantics of the community) is a
challenge.

1.4 Contributions and Organization
In this paper, we propose a novel model for OCS, the theory based

on the model, and the algorithms that solve OCS. More specifically,
we make the following contributions:

• We introduce a model for OCS that satisfies not only the
traditional community semantics, but also the semantics of
overlapping. Furthermore, the two types of semantics are
consistent in our model.

• We propose several algorithms to solve OCS. These algo-
rithms produce meaningful results, and can handle million-
node graphs.

• We offer the theoretical guidelines for parameter selection.
The guidelines take into consideration the structural proper-
ties of real networks, and ensure the discovery of meaningful
overlapping communities in real life complex networks.

• We conduct extensive experiments on real networks to justify
our algorithms and theories. We also show many applications
of OCS model and algorithms.

The rest of the paper is organized as follows. Section 2 discuss-
es related work. Section 3 focuses on the model and the problem
of overlapping community search. Section 4 describes a naive al-
gorithm and an improved algorithm. We further propose a more
efficient approximate algorithm. Experimental results in Section 5
show the performance and effectiveness of both the exact and the
approximate algorithms. We show some potential applications for
OCS model in Section 6. We conclude in Section 7.



2. RELATED WORK
Our work is closely related to work on several topics, including

overlapping community detection, dense subgraph discovery, and
clique finding.

Overlapping community detection. Palla et al. [1] first no-
ticed that most real networks have overlapping community struc-
tures and proposed a percolation based method to detect overlap-
ping communities in real networks. They also defined a community
as a k-clique component. But they did not generalize it to allow re-
laxation. They developed a software called CFinder [4] based on
the method to detect overlapping communities on biology network-
s. Their work was further extended with the EAGLE [5] algorith-
m that merges two cliques into one community if their Jaccard-
similarity score is large enough. Gregory et al. [6] transformed
the problem of overlapping community detection (OCD) on graph
G into an equivalent non-overlapping community detection prob-
lem on another graph G′, which is produced by duplicating certain
vertices or edges in G. They used betweenness as the heuristic to s-
elect the vertex or edge to be duplicated. They further improved its
performance by using local betweenness in a way that can be quick-
ly computed to approximate the betweenness [7]. Ahn et al. [8]
reinvented a community as a group of links instead of vertices so
that they can always produce a hierarchical dendrogram on vertex-
overlapped networks. Baumes et al. [9] proposed a greedy solution
to grow overlapping communities. The algorithm first ranks all n-
odes according to some criterion, such as PageRank. Then, each n-
ode is added in turn into existing communities whose densities will
increase after the acceptance of the new node as a member. Xu et
al. [10] found that some vertices can not be classified into any com-
munities. These vertices, called hubs, usually bridge different com-
munities. So they proposed a linear algorithm, called SCAN, to find
hubs and communities. Recently some efficient overlapping com-
munity detection algorithms were proposed, including SLPA [11],
GCE [12] and OSLOM [13]. SLPA simulates the human commu-
nication behavior and realizes it into a speaker-listener label prop-
agation algorithm. GCE identifies distinct cliques as seeds and ex-
pands these seeds by greedily optimizing a local fitness function.
OSLOM finds overlapping communities by local optimization of
a fitness function expressing the statistical significance of clusters
with respect to random fluctuations.

Compared to OCD, OCS is a more light-weight problem model,
and it is suitable for online query answering. By definition, OCD
inherently implies intractable computation complexity. For exam-
ple, CFinder needs to enumerate all k-cliques in a graph and then
combine them in terms of overlap between cliques. Both clique
enumeration and pairwise computation of clique similarity are cost-
ly. In contrast, in OCS, most resulting communities tend to occur
around the local neighborhoods of the query vertex, allowing find-
ing the answers by only exploring a part of the graph instead of
processing the entire graph.

Dense subgraph discovery. In many graphs whose dense sub-
graphs have clear boundaries and can be separated from each other,
communities are dense subgraphs. In this sense, our work is close-
ly related to dense subgraph discovery. The problem of finding the
densest subgraph is NP-hard, where the density of a graph G(V,E)

is usually measured by 2|E|
|V |(|V |−1)

. Doron et al. [14] gave an ap-
proximate algorithm for finding the dense k-vertex subgraphs of
a given graph, with approximation ratio O(nδ) for some δ < 1

3
.

For practical use, Gibson et al. [15] used recursive shingling to find
dense subgraphs on massive graphs. Their algorithms are scalable
to web-scale graph with 50M hosts and 11B edges but without guar-
antees for the density of the result. To handle Internet-sized graph
data in the form of stream, Bahman et al. [16] proposed a greedy
solution for graph streams, which takes O(log1+ϵn) passes for any
ϵ ≥ 0 yielding approximation factor of 2(1+ ϵ). Some other meth-

ods propose different definitions of dense subgraphs. For example,
DN-graph is proposed in [17] and accompanied with a triangle-
counting based solution. Although dense subgraph discovery is re-
lated to community discovery, they are essentially different from
each other. A community is far beyond a dense subgraph. As a
community, the density within the subgraph is expected to be sig-
nificantly larger than the outside world of the subgraph. Further-
more, our problem is a typical search problem, in which a query
vertex needs to be specified.

Clique finding. k-cliques underlie our community definition.
There are already many k-clique related literatures. Most of them
concern clique finding, i.e., finding a maximal clique or finding
cliques with a size constraint. In general, the decision version of
clique finding is NP-Complete [18]. Derényi [19] gave the thresh-
old of edge-linking probability for the emergence of a giant k-
clique component in an Erdos Renyi(ER) [20] random graph. To
solve the problem practically, local search [21] is widely employed
in many efficient solutions [22, 23, 24]. Along this direction, re-
active local search (RLS) [22], dynamic local search (DLS) [23]
and an improved DLS [24] have been proposed in turn. For disk-
resident massive graphs, Cheng et al. [25] proposed an external-
memory algorithm ExtMCE to reduce memory usage. They built
a summary of small-sized graph, called H*-graph, to precisely en-
code the neighborhood information in the original graph. We only
use k-clique to define community. In our problems, we not only
need to find cliques around the query vertex, we also need to take
care of clique adjacency. The second issue is not addressed in the
clique-related work.

3. OVERLAPPING COMMUNITY
In the following, we first define the model as well as the problem

(Section 3.1). Then, we justify the model by highlighting some
of its important properties (Section 3.2). Finally, we discuss how
to tune the parameters in the model to produce meaningful results
(Section 3.3).

3.1 Model and Problem Definition
We start with the definition of OCS problem. Then, we generalize

it into the (α, γ)-OCS problem.

3.1.1 OCS
Network communities are usually modeled by k-cliques [1]. Giv-

en an original network G, we derive a k-clique graph from G. In
the k-clique graph, each node represents a k-clique in G, and an
edge between two nodes means that the k-cliques the two nodes
represent are adjacent in G, where adjacency is defined as follows:

DEFINITION 1 (CLIQUE ADJACENCY). Two k-cliques are ad-
jacent if they share k − 1 vertices.

We define OCS based on the concept of k-clique components.

DEFINITION 2 (k-CLIQUE COMPONENT). Let C be a connect-
ed component in the k-clique graph. A k-clique component is the
union of all k-cliques represented by nodes in C.

Intuitively, given a vertex v0, there may be multiple communi-
ties that contain v0. All these communities naturally constitute
the overlapping communities that contain v0. Thus, the problem
is finding all such communities.

PROBLEM 1 (OVERLAPPING COMMUNITY SEARCH (OCS)).
Given a graph G(V,E), a query vertex v0 and a positive integer k,
we need to find all k-clique components containing v0.

EXAMPLE 2 (OCS). Consider the graph shown in Figure 1.
Assume we want to find overlapping communities that contain node
b (i.e., v0 = b). Let k = 4. We have three k-cliques containing b:
C1 = abcd, C2 = abce and C3 = bfhg. The clique graph is
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(a) The clique graph
for (3, 1)-OCS
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(b) The clique graph
for (4, .8)-OCS

Figure 2: Clique graphs are sensitive to the parameters of OCS.

shown in Figure 2(a). Hence, C1 ∪C2 and C3 are returned as two
overlapping communities containing the query vertex.

3.1.2 (α, γ)-OCS
The definition of overlapping community given above is too re-

strictive: First, every pair of nodes in each k-clique by definition
must be connected. Second, two k-cliques are considered adja-
cent iff they share as many as k − 1 nodes. In this section, we
define a more general problem, (α, γ)-OCS, by relaxing the two
constraints.

First, we relax the adjacency requirement. In (α, γ)-OCS, two
k-cliques are considered adjacent if they share α ≤ k− 1 vertices.
This leads to the definition of α-adjacency.

DEFINITION 3 (α-ADJACENCY). Two subgraphs G1 and G2

of graph G(V,E) are α-adjacent if they share at least α vertices.

Second, we relax the requirement of cliqueness. A k-clique is
the densest graph among all k-node graphs. We generalize it to
γ-quasi-clique by exposing parameter γ to tune the density of the
subgraph.

DEFINITION 4 (γ-QUASI-k-CLIQUE [26]). A γ-quasi-k-clique
of graph G is a k-node subgraph of G with at least ⌊γ k(k−1)

2
⌋

edges (where 0 ≤ γ ≤ 1).

We now give a generalized version of overlapping community
search: (α, γ)-OCS. Similar to the basic version, we also intend
to find all overlapping communities containing a query vertex. But
each community here is a γ-quasi-k-clique component and the clique
adjacency is defined by α adjacency. Clearly, Problem 1 is simply
(k − 1, 1)-OCS.

PROBLEM 2 ((α, γ)-OCS). For a graph G, a query vertex v0
and a positive integer k, the (α, γ)-OCS problem finds all γ-quasi-
k-clique components containing v0.

EXAMPLE 3 ((α, γ)-OCS). To continue with the previous ex-
ample, consider (4, 0.8)-OCS and k = 5 and v0 = b. abcde and
bghif are two resulting communities. This can be directly obtained
from the clique graph shown in Figure 2(b).

3.1.3 Complexity
We next analyze the complexity of overlapping community search.

First, we show that (k− 1, 1)-OCS is NP-hard. Given a query ver-
tex v0, the decision version of (k− 1, 1)-OCS is to decide whether
there are any k-cliques that contain v0. When k is not a constant,
this decision problem is NP-complete, which can be reduced from
the k-clique problem (deciding whether a graph G has a k-clique).
Then, as a more general problem, the (α, γ)-OCS problem is also
NP-hard.

3.2 The Rationale
Is the model proposed in Section 3.1 meaningful? In this section,

we justify it from the following three aspects: community density,
overlapping-awareness and consistency.

3.2.1 Community Density
To qualify as a community, a subgraph obviously needs to have

enough density. In (α, γ)-OCS, the parameters α and γ together
control the closeness among the members of a community. In this
subsection, we establish a lower bound (Theorem 1) of the average
degree for communities found by (α, γ)-OCS. Theorem 1 is based
on Lemma 1. As an example of Theorem 1, the average degree of
a community of (k − 1, 1)-OCS is at least k − 1.

LEMMA 1. For a γ-quasi-k-clique, the number of edges inci-
dent to an arbitrary set of x vertices is at least max{0, γ

(
k
2

)
−(

k−x
2

)
}.

PROOF. The total number of edges of this clique is at least γ
(
k
2

)
.

The subgraph induced by the rest k− x vertices has at most
(
k−x
2

)
edges, which are not incident to the selected vertices. Therefore,
the lemma holds.

THEOREM 1 (LOWER BOUND ON AVERAGE DEGREE). The av-
erage degree of each community found by (α, γ)-OCS has a lower
bound

2max{0,min{f(1), f(α), f(k)}}

where f(x) =
γ(k2)−(

k−x
2 )

x
.

PROOF. First, we show that for x ∈ {1, 2, ..., α, k}, it holds
that f(x) ≥ min{f(1), f(α), f(k)}. We have f ′(x) = − 1

2
+

(1−γ)k(k−1)

2x2 , which satisfies the following inequalities:{
f ′(x) ≥ 0, 0 < x ≤

√
(1− γ)k(k − 1)

f ′(x) < 0, x >
√

(1− γ)k(k − 1)

Thus, f(x) takes its minimum value at x = 1, x = α or x = k,
which means f(x) ≥ min{f(1), f(α), f(k)}.

Now, suppose C is a community found by (α, γ)-OCS, and C
consists of t different cliques C1, C2, ..., Ct. Let Vi =

∪
1≤j≤i Cj .

Let vi = |Vi − Vi−1|, we have |C| =
∑

1≤i≤t vi. Let ei be the
number of edges in E[Vi] − E[Vi−1], where E[Vi] is the edges
induced by Vi. The average degree of C is 2|E(C)|

|V (C)| , which equals∑
1≤i≤t 2ei

|C| = 2
|C|
∑

1≤i≤t,vi ̸=0 vi ×
ei
vi

. Using the minimal value
of ei

vi
to replace each ei

vi
, we get

2|E(C)|
|V (C)| ≥

2
∑

1≤i≤t,vi ̸=0 vi

|C| min
1≤i≤t,vi ̸=0

{ ei
vi
} = 2 min

1≤i≤t,vi ̸=0
{ ei
vi
}

Due to the definition, v1 = k, ∀2 ≤ i ≤ t, vi ≤ α. According
to Lemma 1 and the fact that f(x) ≥ min{f(1), f(α), f(k)}, we
find that the average degree of a community found by (α, γ)-OCS
has a lower bound 2max{0,min{f(1), f(α), f(k)}}.

3.2.2 Overlapping Awareness
The model should be able to reveal the overlapping relationships

of multiple communities. Note that this is not a trivial task. When
two subgraphs overlap, it is hard to tell whether they are two com-
ponents of a single community or two overlapping communities.
In OCS, given two subgraphs H1, H2 that contain the query ver-
tex, we have two choices: return H1 ∪ H2 as a single community
or return H1, H2 as two overlapping communities.

Previous models of communities were overlapping-unaware, and
even overlapping-unfriendly. A widely adopted model [3] consid-
ers a subgraph whose minimal degree is larger than a given thresh-
old as a valid community. Thus, the union of two communities is
also a valid community. Hence, two communities can always be
merged, even if they have very little overlap.

In (α, γ)-OCS, we use α to decide whether two components have
enough overlapping to be considered and merged as a single com-
munity. Specifically, if two γ-quasi-k-cliques share fewer than α
vertices and they are not reachable in any clique component, they
are considered as two overlapping communities instead of a single
community.



3.2.3 Consistency
Community search must be consistent, that is, if a community C

is considered a community for a query vertex v0, then if we use
any other vertex in C as a query vertex, we should also obtain C
as its community. We establish the consistency of (α, γ)-OCS in
Theorem 2, which can be easily derived according to the fact that
clique adjacency is an equivalence relationship.

THEOREM 2 (CONSISTENCY). In (α, γ)-OCS , if C is a com-
munity that contains query vertex v0, then for any other vertex
v ∈ C as the query vertex, C is also returned as its community.

3.3 Parameter Selection
The model for overlapping community contains 3 parameters:

k, α, γ. The selection of these parameters is crucial to produc-
ing meaningful results. In this section, we will give the theoretic
guideline for selecting appropriate parameters.

3.3.1 Selection of γ and k

Parameter γ controls the density of the community. The selection
of k and γ is related, in the sense that the larger the k, the more
difficult it is to find communities with the high density. Hence, in
order to generate meaningful results, γ should vary with k. Next,
we will reveal the relationship between γ and k. We first give a sim-
ple relationship to avoid a trivial case. Then, we establish a more
complicated relationship between them on ER random graphs.

A simple relationship. In general, as a meaningful commu-
nity, the quasi clique needs to be connected. For k vertices, even
when there are k(k−1)

2
−(k−1) edges among them, it is still possi-

ble that they are disconnected. It happens when the k-vertex graph
consists of an isolated vertex and a (k− 1)-vertex clique. To avoid
the disconnected case, γ should be big enough. Hence, we need to
ensure that:

⌊γ k(k − 1)

2
⌋ > k(k − 1)

2
− k + 1,

By transformation, we have

γ ≥ k − 2

k
+

2

k(k − 1)
(1)

Relationship on ER random graphs. Given a graph with N
nodes and M edges, the density of the graph is given by 2M

N(N−1)
.

Next, we use the ER random graph model [20] as an example to
reveal the relationship between γ and k. The ER random graph is
used to simulate real graphs, such as road networks. Consider an
ER random graph G ∈ G(n, p) that has n vertices and each pair of
vertices is linked with probability p, independent of other vertices
and edges. Suppose we randomly pick k vertices from G. Let X
be the random variable that represents the number of edges among
the selected vertices. Then, the probability that X = i is

Pr(X = i) =

(
m

i

)
pi(1− p)m−i (2)

where m = k(k − 1)/2. Let Y be the random variable that repre-
sents the density of the subgraph induced by the randomly selected
k vertices. Clearly, we have Y = X/m. Then, the probability that
k selected vertices have density γ is a function of k and γ, that is:

Pr(Y = γ) =

(
k(k−1)

2

⌊ γk(k−1)
2

⌋

)
p⌊

γk(k−1)
2

⌋(1−p)
k(k−1)

2
−⌊ γk(k−1)

2
⌋

(3)
We give the simulation of Pr(Y = γ) in Figure 3(a) for p = 0.3.

We can clearly see that when γ is fixed, Pr(Y = γ) in general

is a decreasing function of k. This suggests that we can find com-
munities for small k with high probability. We justify this in the
experimental section by showing that for most real networks com-
munities exist mostly for 4 ≤ k ≤ 10.

When k is fixed, Pr(Y = γ) reaches its maximum when γ is
close to the average density. To show this more clearly, we give
Pr(Y = γ) as a function of γ for two fixed k in Figure 3(b).
The simulation results imply that there are many subgraphs of av-
erage density in the networks. In general, a meaningful community
should have a much larger density than the average density. Hence,
we should select a large enough density to disfavor those trivial
communities with average density.
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Figure 3: Simulation of density. This simulation shows the cor-
relation between k and γ.

More formally, once k is given, we may use a confidence value
such as c = 0.05 to construct an inequality Pr(Y ≥ γ) ≤ c which
is equivalent to

∑
i≤j≤m

(
m

j

)
pj(1− p)m−j ≤ c

, since Pr(X ≥ i) = Pr(Y ≥ γ) when i = γm. By solving
above inequation, we find the appropriate i value and correspond-
ing γ. By tuning c, we can control γ. A smaller c generally leads
to larger γ.

3.3.2 Selection of α
Parameter α, as we mentioned before, controls how strictly we

consider two communities to be one community or components of
the same community. Our major goal in selecting a meaningful α
is to avoid two trivial cases.

The first trivial case occurs when the density of a γ-quasi-k-
clique is contributed mainly by its α-size subset. As a result, any
other k − α vertices outside of the clique combined with the sub-
set will be a valid adjacent clique. This trivial case obviously
leads to meaningless communities. To avoid this case, we need(
α
2

)
< γ

(
k
2

)
. By simple transformation, we have

α ≤ ⌈
√

1/4 + k(k − 1)γ − 1/2⌉ (4)

The second trivial case occurs when two γ-quasi-k-cliques inter-
sect at a α-size subset that is quite sparse. In real networks, if the
common part of two subgraphs are too sparse, they can rarely be
regarded as a single closely-connected community. If the common
part of two subgraphs is too sparse, the two subgraphs can rarely
be regarded as a single closely-connected community. This case
happens if all edges are located among the rest k − α vertices. To
avoid this, we set γ

(
k
2

)
>
(
k−α
2

)
so that the common part has at

least one shared edge. By transformation, we have

α ≥ ⌊k + 1/2−
√

γk2 − γk + 1/4⌋ (5)

Combining the two cases, given k and γ, we chose α to be an
integer between the lower and upper bounds. As an example, when



γ = 1, we have 1 ≤ α ≤ ⌈
√

1/4 + k(k − 1) − 1/2⌉. Further-
more, when k = 4, we have 1 ≤ α ≤ 3. Hence, usually we use
α = 3.

3.3.3 Practical selection of parameters
Based on the above analysis, we show that α = k − 1, γ = 1

(or values close to 1) are typical settings of (α, γ)-OCS. By simple
transformation of Eq. 1, we have

γ ≥ 1− 2

k

k − 2

k − 1
= f(k)

. When k > 3, f(k) converges to 1. It can be observed from the
simulation of f(k) in Figure 4. Hence, γ = 1 (or values close to
1) is a typical setting. Next, we show that α = k − 1 is also a
typical setting because only α = k − 1 lies between the lower and
upper bound of α for any k and k−2

k
+ 2

k(k−1)
≤ γ ≤ 1 (shown in

Theorem 3).
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Figure 4: Simulation of f(k).

THEOREM 3. Let α = k −∆ and ∆ be a positive integer less
than k. Only when ∆ = 1, α satisfies Eq. 4 and Eq. 5 for any
k ≥ 2 and k−2

k
+ 2

k(k−1)
≤ γ ≤ 1.

PROOF. First, consider k = 2. Since 0 < α = k −∆ < k, we
have 2−∆ > 0. Hence, only ∆ = 1 satisfies this inequality. Next,
for any k and k−2

k
+ 2

k(k−1)
≤ γ ≤ 1, we have

⌈
√

1/4 + k(k − 1)γ−1/2⌉ ≥ ⌈
√

9/4 + (k − 1)(k − 2)−1/2⌉

, which is not less than k − 1; and

⌊k+1/2−
√

γk2 − γk + 1/4⌋ ≤ ⌊k+1/2−
√

(k − 1)(k − 2) + 9/4⌋

, which is not larger than k− 1. Thus only α = k− 1, i.e., ∆ = 1,
satisfies the constraints.

4. ALGORITHMS
In this section, we will first propose two exact algorithms to solve

OCS. The first is a straightforward solution. The second is a more
efficient exact solution. To further improve the performance, we
also propose a more efficient approximate algorithm.

4.1 Exact Algorithm
4.1.1 Naive Algorithm
We give a naive algorithm according to the definition of OCS.

The direct solution for OCS consists of three major steps, which
are shown in Algorithm 1. In the first step, we find the γ-quasi-
k-clique that contains v0. Then for each newly discovered vertex,
we find all γ-quasi-k-cliques that contain the vertex. We repeat the
above finding procedure until no new vertex can be discovered. In
the second step, we calculate the clique adjacency for all cliques
found in the first step. Finally, we return all clique components as
the resulting communities.

4.1.2 New Algorithm Framework
The naive algorithm is not smart yet. As illustrated in Example 4,

many cliques enumerated in the naive algorithm will not belong
to a valid community. Hence, enumerating these invalid cliques

Algorithm 1 Naive OCS
Input: G(V,E), v0 α, γ, k;
Output: The overlapping communities containing v0

//Stage 1. Find all the candidate cliques
1: Vc ← {v0}
2: for all unvisited vertex v ∈ VC do
3: find_clique(v); ◃ find all cliques that contain v
4: Add all vertices of these cliques into VC ;
5: end for

//Stage 2. Calculate clique component
6: Calculate the adjacency matrix of candidate cliques;

//Stage 3. Return all clique components as communities

is wasteful. This can be avoided if we check the adjacency when
a clique is enumerated. Following this idea, we proposed an im-
proved algorithm, shown in Algorithm 2. The algorithm runs itera-
tively. In each iteration, we find an unvisited clique containing the
query vertex by next_clique(). If such a clique exists, we find the
clique component that the clique belongs to by expand().

EXAMPLE 4 (WASTEFUL ENUMERATION). Consider (3, 1)-
OCS with k = 4 and v0 = d on the graph shown in Figure 2(a),
{a, b, c, d, e} is the unique resulting community. By the naive al-
gorithm, bfgh will also be enumerated and participate in the suc-
ceeding computation, which is wasteful.

Algorithm 2 Improved OCS
Input: G(V,E), v0 α, γ, k;
Output: The overlapping communities containing v0
1: R← ∅;
2: while C ← next_clique(v0), C ̸= ∅ do
3: C← expand(C); ◃ Find the clique component of C
4: R← R∪ {C};
5: end while
6: ReturnR;

Note that for any two adjacent cliques, their clique components
are identical. To avoid redundant enumeration, we record the visit
status of each clique in both next_clique() and expand(), and
only enumerate unvisited cliques. We illustrate this in Example 5.
The new algorithm framework also allows us to further optimize it.
We will present such optimizations in the following sections

EXAMPLE 5 (IMPROVED ALGORITHM). Continue with the pre-
vious example but change v0 to b. next_clique() may first return
bfgh. By calling expand() on this clique, we find the first com-
munity {b, f, g, h}. The next call of next_clique() may return
abce. By calling expand() on this clique, we find abcd. Thus,
{a, b, c, d, e} is the second community. Then, any further call of
next_clique() will return nothing and the algorithm will termi-
nate since all cliques have been visited either in next_clique() or
expand().

4.1.3 Implementation of next_clique()
next_clique(v0) is responsible for enumerating each unvisited

γ-quasi-k-clique containing vertex v0. Finding all cliques is com-
putationally hard. A naive solution needs to exhaustively enumer-
ate all subsets with size k containing v0, and check whether it is a
valid clique. The solution costs O(|V |kk2) time. Because there are
O(|V |k) k-size subsets and checking whether the subset is a valid
clique needs O(k2) time.

Clique enumeration is a well-known computationally hard prob-
lem. Even allowing approximation, clique finding is hard to ap-
proximate. Hence, brute-force enumeration seems to be inevitable
to produce exact results. The major procedure is a depth-first search
with backtracking. The procedure is shown in Algorithm 3. The
search starts from U = {v0}. Then, the procedure iteratively adds
a new vertex into U until a new valid clique is found (line 5,6). The



procedure will stop until all γ-quasi-k-cliques containing the query
vertex are found.

The backtracking search can be improved from two aspects. First,
we just need to select a new vertex from the neighbors of the cur-
rent vertex (line 13). This is because as a valid parameter, γ needs
to satisfy Eq. 1, which ensures the result is a connected subgraph.
Second, we speedup the search by pruning the impossible enumer-
ation (line 11). Let |E(U)| be the number of edges in the subgraph
induced by U . Thus the maximal number of edges that the resulting
clique has is |E(U)| + (k − |U |)|U | + (k−|U|)(k−|U|−1)

2
, which

equals |E(U)|+ (k−|U|)(k+|U|−1)
2

. When the maximal number of
edges is less than γ k(k−1)

2
, that is

g(U) = |E(U)|+ (k − |U |)(k + |U | − 1)

2
< γ

k(k − 1)

2
(6)

, we can certainly prune the current U . The left side of the inequal-
ity is a function of U . We use g(U) to denote it.

Algorithm 3 DFS procedure of next_clique(v0)
1: U ← {v0};
2: DFS(U, v0);
3: procedure DFS(U ,u)
4: if |U | = k then
5: if U is a γ-quasi-k-clique And U is unvisited then
6: Return U ;
7: else
8: Return;
9: end if

10: end if
11: if g(U) < γ

k(k−1)
2

then Return;
12: end if
13: for all (u, v) ∈ E, v ̸∈ U do
14: DFS(U ∪ {v}, v);
15: end for
16: end procedure

4.1.4 Implementation of expand()
Function expand(C) is used for finding the clique component

containing C. By any graph traverse on the clique graph, we can
certainly find the connected component. But the traverse orders are
influential on the performance. Here, we use DFS order.

The procedure of expand(C) is shown in Algorithm 4. The ma-
jor framework is a DFS traverse on the clique graph. In the algo-
rithm, A is a global variable storing the currently found vertices in
the clique component. The key operation in the traverse is finding a
subset S2 from C’s neighborhoods to replace one of C’s subset S1

so that the new combination C′ is a valid clique. To keep the size
of the clique as k, we enforce |S1| = |S2| (line 8). We can also
use Eq. 6 to terminate the search that will not lead to a valid clique
(line 6).

The function Candidate(C − S1) is used for finding a subset
S2 with the same size as |S1| from the local neighborhoods of
C − S1. Note that we do not need to enumerate S2 from the en-
tire V . Because under the constraint of Eq. 1, the induced graph of
(C−S1)∪S2 is always connected. Hence, in the worst case, we just
need to explore the |S1|-hop-neighborhood of C − S1, which con-
tains all vertices that are at most |S1| hops away from any vertex in
C−S1. When k is small, the exploration of |S1|-hop-neighborhood
is effective.

4.1.5 Duplication detection
In both next_clique() and expand() functions, we may meet

the same clique from different paths. For example, for the clique
abc. We may meet it by a − b − c or a − c − b. Hence, we need
to tell whether a clique has ever been visited. For this purpose, we
use a hash table to store visited cliques, allowing in constant time

Algorithm 4 expand(C)

Input: A γ-quasi-k-clique C;
Output: The clique component of C
1: A← C;
2: Expand_clique(C);
3: return A;

4: procedure EXPAND_CLIQUE(C)
5: for all S1 ⊂ C, |S1| ≤ k − α do
6: if g(C − S1) < γ

k(k−1)
2

then Continue
7: end if
8: for all S2 ∈ Candidate(C − S1), |S1| = |S2| do
9: C′ ← (C − S1) ∪ S2;

10: if C′ is unvisited And C′ is a γ-quasi-k-clique then
11: A← A ∪ S2;
12: Expand_Clique(C′);
13: end if
14: end for
15: end for
16: end procedure

to query a visited clique. We use the following hash function:

h(C) = (
∑
vi∈C

id(vi)× aid(vi)) mod b (7)

, where a, b are two large primes and id(vi) is the id of vi. Hashing
each k-size clique takes O(k) time. By DFS, such complexity can
be further reduced to O(1). We only show this on (k− 1, 1)-OCS.
In this case, two successively visited cliques have only two different
vertices in the DFS traverse order. Thus, we can calculate the hash
value in an incremental way. Suppose, Ci+1 = (Ci − {v})∪ {u},
we have

h(Ci+1) = (h(Ci)− id(v)× aid(v) + id(u)× aid(u)) mod b
(8)

4.1.6 Optimization on (k − 1, 1)-OCS
In the exact solutions for the general OCS problem, we can only

detect duplication after the enumeration of a clique. For a k-size
clique, we may enumerate it O((k− 1)!) times. Next we show that
on (k−1, 1)-OCS, we can avoid such redundant enumerations. We
only discuss it for next_clique(v0). Expand() can be optimized
with the same technique. When we search for a γ-quasi (γ < 1)
clique containing v0, we need to exhaustively enumerate all possi-
ble paths (line 13-15 in Algorithm 3) to ensure that the community
is connected. However, on (k − 1, 1)-OCS, we are searching for a
standard clique (a complete subgraph). It is order independent to
find such cliques. That is, for these cliques we can use any DFS
order to enumerate the same clique. As a result, on (k − 1, 1)-
OCS, we can pose an arbitrary linear order on V . Then, we search
for a clique according to the linear order. That is only adding a
vertex with a superior order into the partial solution. In this way,
redundant enumerations of a k-clique can be avoided.

4.2 Approximate Algorithm
Next, we propose an efficient approximate algorithm for (α, γ)-

OCS. The algorithm shares the same framework as Algorithm 2
with next_clique() and expand() further approximated.

4.2.1 Approximation in next_clique()
The next_clique() function may enumerate an exponential num-

ber of γ-quasi-k-cliques. To reduce the enumeration space, we only
enumerate an unvisited clique which contains at least one new ver-
tex that does not belong to any communities already found. This
heuristic can be achieved by a slight change of the DFS procedure
(Algorithm 3). Let v0, v1, .., vk be the vertex sequence (staring
from the root v0) in the DFS order. We require that the second ver-
tex v1 is a new vertex. In this way, we ensure that the new clique
contains at least a new vertex. Note that we enforce that the vertex



sequence contains a new vertex as early as possible and v1 is the
earliest vertex added into the sequence. Hence, v1 is required to be
a new vertex.

4.2.2 Approximation in expand()

We first study the traverse orders in expand() function. We show
in Example 6 that to meet all vertices in a community, the best case
only requires a linear number cliques to be visited, while in the
worst case, an exponential number of cliques may be visited.

EXAMPLE 6 (INFLUENCE OF TRAVERSE ORDERS). Consider
a complete graph with 100 vertices and k = 4. For (k−1, 1)-OCS
on any query vertex, the graph itself is the unique answer. To find
the exact result, we need to visit

(
100
4

)
, approximately millions of

k-cliques. Alternatively, if we always select a clique that is adja-
cent to previously visited cliques and contains at least one unvisited
vertex, after visiting 97 cliques, all vertices in the result are met.

The above example implies that we may find a community quite
early before we exhaustively enumerate all γ-quasi-k-cliques in the
community. Let C be a community of (α, γ)-OCS on graph G, in
general we expect to find a shortest clique sequence C1, C2, ...Cm

such that each Ci is adjacent to at least one of its preceding cliques,
and ∪1≤i≤mCi = C. However, in general, there exists an expo-
nential number of possible sequences, it is hard to select the short-
est sequence to visit.

Here, we will present a heuristic to find a short clique sequence.
We still use DFS order. Consider expand(C1). Let Ci, Ci+1 be
two successively visited cliques; we always select Ci+1 such that

Ci+1 −
∪
j≤i

Cj ̸= ∅ (9)

. In other words, Ci+1 is the clique containing at least one unvis-
ited vertex. The traverse stops at Cm, to which no other unvisited
cliques satisfying Eq. 9 are adjacent. In this way, the complete
clique sequence C1, ...Cm is found. We return the union of them
as the result of expand(C1). This heuristic can be implemented by
simply adding a condition, S2 −A ̸= ∅, in line 10 of Algorithm 4.

4.2.3 Analysis
Consider a k-clique component C. Compared to the exact algo-

rithm, which explores O(
(|C|

k

)
) cliques, the approximate expand()

algorithm only explores exactly O(|C|) cliques. Because the heuris-
tic defined in Eq. 9 ensures finding a new vertex each time a clique
is visited. O(|C|) cliques will be visited and many wasteful enu-
merations are avoided. In this way, we reduce the exponential com-
plexity to linear complexity. However, this heuristic may produce
inexact results, which are illustrated in Example 7. We will show
in the experimental section that this heuristic works quite well on
real graphs, producing accurate results in most cases.

EXAMPLE 7 (BAD CASE). Consider the (2, 1)-OCS on the graph
shown in Figure 1 with k = 3 and v0 = f . The right community
is bfghi. If cliques bfh, bgh were first visited, the search will stop
since no new clique can be visited. As a result, i will be missed. If
we first visit bfh and bfg, fgi is qualified to be visited and then
we can find the right community.

Due to the NP-hardness to approximate of clique finding, it is
hard to give a theoretic guarantee of the approximation quality.
However, we find that the approximate communities are finer than
the exact ones. More formally, overlapping communities can be
considered as a collection of subsets P = {C1, C2, ...Ck}. Then,
for each community Ci in the approximate result, ∃C′ such that
Ci ⊆ C′ and C′ is an exact community of v0. It clearly holds since
the two approximations are equivalent to strengthen the constraint
of a subgraph as a community. Since the community is finer, its size
is smaller than or equal to the exact one. We have mentioned that
the approximate algorithm only explores O(|C|) cliques. There-
fore, this property implies that the approximate algorithm is more
efficient.

5. EXPERIMENTS
In this section, we present the experimental study and show the

effectiveness and efficiency of our models and algorithms.

5.1 Experiment Setup
We ran all experiments on a PC with Intel Core2 at 2.13GHz,

4G memory running 64-bit Windows 7. We implemented all al-
gorithms in C++. We compared the improved exact algorithm and
the approximate algorithm. We also compared the OCS model and
the OCD model. Except the study on the influence of parameters
of γ and α, all results without explicit statement are obtained by
(k − 1, 1)-OCS model.

We used four real networks to test our solution. The basic statis-
tics of these networks are shown in Table 1. DBLP is a scientific
collaboration network extracted from a recent snapshot of the D-
BLP dataset 2. Each vertex in the graph represents an author and
each edge indicates a coauthoring relationship. Livejournal 3 is the
friendship network of Livejournal, a social networking and blog-
ging site. Google represents the web graph that was released in
2002 by Google. In the graph, nodes represent web pages and di-
rected edges represent hyperlinks between them. We ignore the
direction of the edges. WordNet is a semantic network in which
each vertex represent a specific sense in language and each edge
represents a certain semantic relationship between senses. Word-
Net has been widely used in a variety of real applications, such as
word sense disambiguation, automatic text classification and auto-
matic text summarization.

5.2 Case Study
We justify the model by two case studies: the scientific collabo-

ration network and WordNet.

5.2.1 Scientific collaboration network
We run both the improved exact algorithm and the approximate

algorithm on the scientific collaboration network extracted from D-
BLP. The two algorithms produce almost the same results for most
query vertices. Here, we use ‘Jiawei Han’ as the query vertex.
Jiawei Han is a renowned computer scientist specializing in da-
ta mining and database. When k = 6, the exact result and the
approximate result only differ in one community, where only two
authors are missing in the approximate result. This justifies the ef-
fectiveness of the approximate algorithm. Hence, in the following
evaluation, we will only use results produced by the approximate
solution.

We show in Figure 5(a) part of the overlapping communities that
Jiawei Han resides in. It only takes 18ms for the approximate solu-
tion to get the results, which justifies the efficiency of the approxi-
mate solution. Next, we focus on the effectiveness of the approach.
We find that our overlapping community search model is meaning-
ful in many aspects.

• First, it successfully unveils multiple research interests of an
author. For example, in Jiawei Han’s case, the community
C1 represents the topic of multimedia data mining and the
community C2 is about stream data mining. Each communi-
ty has a clear boundary to be distinguished from others. We
also can see that those authors with multiple research inter-
ests occur in different communities. For example, Jian Pei
simultaneously occurs in C2 and C3, reflecting his research
interest in both stream data mining and information network
mining.

• Second, our model is flexible. By tuning parameter k, our
model can discover communities with different closeness.
For example, when k = 9, we discover more closely-connected
communities of ‘Jiawei Han’ as shown in Figure 5(b). From

2Available at http://dblp.uni-trier.de/xml/
3This and Google are available at http://snap.stanford.edu/data.



Basic information Performance of OCD and OCS
Dataset #Vertices #Edges average degree LA Amortized LA OSLOM2 Amortized OSLOM2 OCS

WordNet 82670 133445 3.23 51s 0.61ms 1913s 23.1ms 0.15ms (k=3)
DBLP 560851 1816613 6.48 6183s 11ms 6993s 12.5ms 6.24ms (k=4)
Google 916427 4322051 9.43 22873s 25ms 84725s 92.5ms 31ms (k=6)

Livejournal 4847571 42851237 17.7 >= 24h N/A N/A N/A 64ms (k=9)

Table 1: Datasets, performance of OCD and OCS
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Figure 5: Case study on DBLP. OCS can find communities rep-
resenting different research topics. By tuning k, OCS can find
communities with different closeness. This case study justifies
the effectiveness of the OCS model.

the result, we can see that community C1 of k = 6 is broken
up into two more-closely connected overlapping communi-
ties C1, C2 of k = 9. The two communities respectively
reflect Jiawei’s more specific research interest. One is about
multimedia data mining and the other is about association
rule mining on large relational databases. When k becomes
larger, many periphery members of communities who have
relatively fewer collaborations with members in the commu-
nity are excluded from the community. For example, we find
that 59 authors in the result when k = 6 are excluded from
the result when k = 9.

5.2.2 WordNet
In WordNet, we use the word ‘vessel’ as the query vertex and

we set k = 3. The result in Figure 6 shows that ’vessel’ occurs
in multiple communities, and each community represents a certain
sense of ’vessel’. The community that contains ’bowl’, ’dish’ cor-
responds to tablewares. The community consisting of ’barrel’ and
’tube’ represents the meaning of bucket. Another two communi-
ties represent the meaning of ships. The difference between these
two communities is that the one consisting of ’ship’ and ’galley’
is generally used for describing ships with large tonnage and the
other community are usually used for describing small boats. This
example shows that our OCS model is helpful for finding different

senses of a word, which is a fundamental task in natural language
understanding.

vessel

barrel

tube

boat

dish

bowl

contain

contain-
er

galley
platepotship

yacht

C1

C2

C3 C4

Figure 6: Case study on WordNet. OCS can find different sens-
es of a word.

5.3 Performance
We first compare the performance of the exact algorithm and the

approximate algorithm. Then, we compare the performance of OC-
S and OCD.

OCS: exact vs approximate methods. We tested the per-
formance for both exact algorithms and approximate algorithms.
For each k, we randomly selected 100 valid query vertices (with
degree at least k − 1). We counted the average query answering
time for these vertices under different k. Note that the exact solu-
tion has exponential enumeration cost. Hence, when the running
time exceeds 60s, we terminated the exact algorithm and recorded
the entire query response time as 60s. Clearly, this favors exac-
t solutions. However, approximate solution still shows significant
advantage over exact solutions as the following results indicate.

The results on three real networks are given in Figure 7. We can
see that in general approximate algorithm is more than two orders
of magnitudes faster than the exact one. Note that the performance
priority of the approximation algorithm over the exact one is more
striking than observed since we limit the running time of the ex-
act algorithm to 60s. For Livejournal and Google, significant per-
formance difference can be consistently observed over different k.
When k = 4, most valid query vertices have non-trivial results and
the approximate algorithm shows a much clearer advantage over
the exact algorithm. On DBLP, an increase in speed by three orders
of magnitudes is achieved for k = 4. For all the tested networks,
the approximate solution’s performance is quite stable compared to
the exact solution, especially on DBLP. Even for the biggest two
datasets, Livejournal and Google, both with approximately a mil-
lion nodes and tens of millions edges, the approximation algorithm
returns results within less than 100ms for almost all k. This suffi-
ciently shows that the approximate solution can be used as online
service for large real graphs.

OCS vs OCD. For comparisons, we also give the running time
of the state-of-the-art OCD algorithmss LA [9] and OSLOM2 [13]
in Table 1. We use the −fast option to get the fastest results for
OSLOM2. The time of OSLOM2 on Livejournal is not available.
Because the program, which was downloaded from its official web-
site, exited unexpectedly on Livejournal. We find that even on
the smallest graph WordNet, two OCD algorithms still need 51s
or 1913s, respectively. For a fair comparison, we also give the
amortized running time of OCD, that is running time of OCD

|V | . Even con-
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Figure 7: Performance. The performance of the approximate
solution is significantly better than that of the exact solution.

sidering the amortized running time, OCS is more efficient than
OCD. From the comparison, we can clearly see that OCD is com-
putationally prohibitive on large networks. In contrast, OCS is a
lightweight solution to help us find overlapping communities.

5.4 Quality
In this subsection, we show the quality of the solution provided

by the approximate algorithm. Overlapping communities express a
certain equivalence relationship on V . Any two vertices in Ci are
equivalent to each other under this equivalence relationship. Thus,
we may use the overlapping ratio of the equivalence relationship
to quantify the similarities between exact and inexact results. Let
P1 = {C1, C2, ...Ck} be the approximate result, and let C′

i be
one of the exact communities that contain Ci as a subset. Such C′

i

certainly exists since P1 is finer than the exact communities P2.
Then, we define the similarity between P1 and P2 as

sim(P1, P2) = max
1≤i≤k

√
|Ci|(|Ci| − 1)

|C′
i|(|C′

i| − 1)
(10)

. Clearly, we have 0 ≤ sim(P1, P2) ≤ 1.
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Figure 8: Accuracy of approximate algorithm. Communities
produced by approximate solutions are quite close to that pro-
duced by exact solutions.

We ran the approximate algorithm with 100 randomly selected
valid query vertices on each network under different k. For each
query vertex, we calculated the similarity value defined in Equa-
tion 10. We summarized the average and variance of the similarity
value for 100 random query vertices. The results are shown in Fig-
ure 8. It is clear that for each tested network and each k, more than
70% accuracy can be achieved. In some special cases, for example,
on DBLP and Google, almost 90% accuracy can be achieved.

We give the detailed accuracy results of DBLP in Table 2. In
the table, for each k, 100 randomly selected valid vertices were
queried. #has community denotes the number of vertices among
them that have valid communities. #equivalent is the number of
vertices for which the approximate algorithm produces the exact
results. And ratio = #equivalent

#has community
. We can see that for any k,

more than 79% of query vertices have the exact results. When k
increases, the accuracy increases. In many real applications where
community has vague meanings, the accuracy of the community

is not a strict requirement and our approximate algorithm is quite
suitable for these applications.

k 4 5 6 7 8 9
#equivalent 66 69 58 43 37 29

#has community 84 83 65 49 40 30
ratio 79% 83% 89% 88% 93% 97%

Table 2: Accuracy on DBLP. For most query vertices, the ap-
proximate solution produces exact results.

5.5 Effectiveness
To show the effectiveness of the OCS model, we computed the

proportion of valid query vertices that have communities. We ran
the approximate algorithm on 100 randomly selected valid query
vertices. For comparison, the proportions of valid query vertices
are also given. The results are shown in Figure 9. From the figure,
we can see that for each network, OCS model can discover mean-
ingful communities for a significant number of vertices. On both
DBLP and Google, when k = 4, more than 90% of valid query
vertices have communities. For all the networks, the ratios of valid
vertices and those with communities decrease as k increases. This
can be naturally explained, since the constraint on the community
is more restricted for a larger k.
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Figure 9: Effectiveness of OCS. For most vertices, OCS model
can find non-trivial results.

5.6 Influence of k

The value k is the most important parameter of OCS. In this sub-
section, we investigate the influence of k on the result of commu-
nities. We are interested in the number of communities as well as
the size of communities.

We first give our analysis about the influence of k on communi-
ty size and community number. In general, it is expected that the
community size monotonically decreases with k. When k is small,
the constraint for a group of vertices forming a community is weak.
Consequently, it is easy to find large communities. When k grows,
the community will become smaller. The influence of k on com-
munity number is a little bit more complicated. In general, there
are two consequences caused by the growth of k:

• (1)The constraint on the closeness of a community becomes
stronger. As a result, many communities found under a small
k will not be a valid community any more. Consequently, the
number of communities will reduce when k grows.

• (2)The condition for two communities to be merged into one
single community becomes stronger. As a result, large com-
munities will be broken up into small communities. Conse-
quently, the number of communities will increase with k.

Hence, it is quite possible that there is a critical point on which
two forces are balanced and maximal number of communities can
be achieved. To verify this conjecture, we studied communities of
‘Jiawei Han’ in DBLP. We summarized the community number and
community size of ‘Jiawei Han’ as the function of k.



Table 3: Performance on WordNet
k 3 4
α 2 2 2 2 3 3 3
γ 1 0.8 0.9 1 0.8 0.9 1

Time (ms) 2298 36044 18022 6000 17882 17801 3395

The results are shown in Figure 10 and they verify our conjec-
ture. From Figure 10(a), we can clearly see that the community
size monotonically decreases with k. When k = 5 and larger, the
community size is almost stable. These communities in general
are core-coauthoring team members of ‘Jiawei Han’. From Fig-
ure 10(b), we can clearly see that k = 5 is the critical point on
which the maximal number of communities are found. Before this,
larger communities are broken up into smaller communities when
k increases. After this, valid communities quickly vanish due to the
strong constraint on the closeness of a community.
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Figure 10: Influence of k. Community size is monotonically
decreasing with k.

5.7 Influence of α and γ

In this subsection, we study the influence of α and γ. We show
our results on WordNet. Similar results were obtained on other net-
works. Since the graph is sparse, we only tested our approach
on k = 3 and k = 4. According to Eq. 1, we have γ ≥ 2

3
for

k = 3, 4. So we chose some representative γ satisfying these con-
straints. Note that for k = 3, only γ = 1 is meaningful. Hence, we
only show the result for γ = 1 when k = 3. If k = 4, when
2
3

≤ γ < 5
6

, the quasi-4-clique has at least four edges; when
5
6
≤ γ < 1, the quasi-4-clique has at least five edges. We used

γ = 0.8 and γ = 0.9 as two representative values of these two
ranges, respectively. For each selected k and γ, we randomly s-
elected 10 valid query vertices as v0 and recorded their average
running time in Table 3. When the query time of a vertex exceeds
60s, we considered it as 60s.

From the results, we found that, for the same k and α, generally
a smaller γ costs more time. This is because higher γ means more
strict constraint, which reduces the search space. For the same k
and γ, the running time decreases with the growth of α. The reason
is similar: a smaller α leads to a bigger search space.

6. APPLICATIONS
In this section, we propose two typical applications of OCS: di-

versity based social network analysis and name disambiguation in
social networks. Our model and solution enable us to measure the
diversity of social ties for a person, which is critical for the diversi-
ty based analysis in a quantitative manner. The OCS model and our
solution also provide new insights to solve name disambiguation in
social networks, which is well known as a hard problem. All the
following studies are conducted on (k − 1, 1)-OCS model.

6.1 Diversity-based Social Network Analysis
In social networks, an individual’s social ties are diverse if he

or she maintains connections to different communities or group-
s. Individuals with diverse social ties are more competitive than

others [27, 28], because they serve as an intermediary with a posi-
tion bridging different groups in a social network, and consequently
own more opportunities than others in the network. Diversity lead-
ing to competition advantage has been widely acknowledged in real
life, but has been rarely verified in a quantified manner. Computing
overlapping communities is obviously a critical step to quantify the
diversity of an individual. Due to the computational hardness of
overlapping community detection, previous diversity measures use
attributes to derive overlapping communities. For example, Shi et
al. [29] uses the conferences at which an author has ever published
a paper to obtain overlapping communities for DBLP scientific col-
laboration network.

Now, we can directly use our solution under the OCS model to
calculate the diversity of an individual. Intuitively, the diversity of
a person can be measured by the number of overlapping communi-
ties found by our approach. Next, we show some diversity related
analysis on DBLP with diversity calculated by our OCS solution.

Diversity distribution. The first class of fundamental ques-
tions includes: what is the distribution of diversity? Can we find
people with really large diversity? To answer these questions, we
randomly select 1000 vertices and summarize the diversity distri-
butions for k = 3, 4, 5. The results are shown in Figure 11. We
find that most persons have diversity 1, indicating that they coau-
thor with authors in a local research community. These authors
are mostly fresh hands in an area. However, there are some au-
thors with large diversity. Some authors have diversity at about 20.
These authors are mostly distinguished scientists in computer sci-
ence. There are also some ambiguous names shared by more than
one author. We will discuss this problem in the next application.

 1

 10

 100

 1000

 0  3  6  9  12 15 18 21

#
v
e
rt

ic
e
s

#communities

(a) k = 3

 1

 10

 100

 1000

 0  3  6  9  12 15 18 21

#
v
e
rt

ic
e
s

#communities

(b) k = 4

 1

 10

 100

 1000

 0  3  6  9  12 15 18 21

#
v
e
rt

ic
e
s

#communities

(c) k = 5

Figure 11: Distribution of diversity

Diversity leading to competitive advantage. Next, we ver-
ify the widely-established conjecture: diversity of social ties leads
to competitive advantage in a social network. In a social network, a
person’s competitive power in general is positively correlated to his
degree. Hence, to verify this conjecture, we summarize the correla-
tion between degree and diversity. The result is shown in Figure 12.
We find positive correlations between degree and diversity, which
verifies the conjecture. This finding strongly suggests that diversity
is one of the important driving forces for an author to become an
academic star. This implication opens opportunity for some other
interesting real applications, such as predicting rising stars.

6.2 Name Disambiguation
Name disambiguation is a typical problem in social network data

management [30, 31]. For example, in DBLP there are at least 40
authors with the same name ‘Wei Wang’. In general, name disam-
biguation is a challenging problem when person identity informa-
tion is missing. The OCS model and its solution provide new in-
sight to solve this problem. They are at least helpful in two aspects:
First, they can be used to identify ambiguous names. Second, the
overlapping communities themselves are candidate entities with the
same name.

We ran our solution to (k−1, 1)-OCS with k=4 on each vertex of
DBLP. Table 4 presents the ambiguous names that have significant



Ambiguous names Renowned authors with large diversity
Name degree # communities Name degree # communities
Wei Li 589 113 Jennifer Widom 106 11
Xin Li 399 67 Alon Halevy 62 7

Ming Li 399 72 Hector Garcia-Molina 182 26
Li Zhang 486 95 David Dewitt 142 20

Ying Zhang 282 59 Michael Stonebraker 171 22
Hui Zhang 281 58 Jeffrey D. Ullman 97 11

Table 4: Ambiguous names, renowned authors in DBLP. Ambiguous names have a significantly large number of communities.
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Figure 12: Correlation between diversity and degree (with k =
4). Diversity is correlated to degree.

number of entities in DBLP. We found that most of these names
have a large number of communities. Their community numbers
in general can be considered as exceptions when compared to the
community number distribution observed in Figure 11. For com-
parisons, we also give the community number of renowned scien-
tists in the database community. It is clear that for a real person,
even as famous scientists with many papers and abundant coau-
thoring relationships, their community numbers are smaller than
the community number of ambiguous names. These facts strong-
ly suggest that the large number of overlapping communities is a
good indicator of ambiguous names referring to multiple entities.
Besides name disambiguation in social networks, OCS is also help-
ful for sense disambiguation in semantic networks, as shown in the
case study on WordNet.

7. CONCLUSION
Most real networks have overlapping community structures. In

this paper we propose a novel overlappingness-aware communi-
ty search problem: overlapping community search. Compared to
overlapping community detection, our model is much lightweight
and supports online query answering. We reveal the rationale be-
hind the model and provide theoretical guidelines for tuning the
model. We devise several exact algorithms and an efficient approx-
imate algorithm to find meaningful overlapping communities. We
conduct extensive experiments to show that both the exact algo-
rithms and approximate algorithms are effective to discover mean-
ingful overlapping communities in real networks, and the approx-
imate solution is quite efficient, supporting online (within several
ms) query answering on million-node graphs.
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